

Software Engineering

This page intentionally left blank

Software Engineering
Architecture-Driven

Software Development

Richard F. Schmidt

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Todd Green
Editorial Project Manager: Lindsay Lawrence
Project Manager: Priya Kumaraguruparan
Designer: Mark Rogers

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA, 02451, USA

Copyright © 2013 Published by Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the
Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become
necessary. Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information or methods described herein. In using such information or
methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Schmidt, Richard, 1956-
 Software engineering: architecture-driven software development / Richard Schmidt.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-12-407768-3
 1. Software engineering. 2. Software architecture. 3. Computer software—Development. I. Title.
 QA76.758.S364 2013
 005.1—dc23� 2013000589

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Printed in the United States of America

13  14  15  16  17  10  9  8  7  6  5  4  3  2  1

For information on all MK publications visit our website at www.mkp.com

http://www.elsevier.com/permissions

v

Contents

A Note from the Author..xv
Preface...xvii

SECTION 1	 SOFTWARE ENGINEERING FUNDAMENTALS
CHAPTER 1	 Introduction to Software Engineering...............................7

	 1.1	 Specifying software requirements...10
	 1.2	 Software architecture...11
	 1.3	 Integrated product and process development..............................12
	 1.4	 Integrated product teams...13
	 1.5	 Work breakdown structure..15
	 1.6	 Software breakdown structure...15
	 1.7	 Specification and documentation trees..17
	 1.8	 Integrated master plan and schedule...17
	 1.9	 Reviews and audits..18
	 1.10	Configuration management and change control..........................20
	 1.11	Trade-off analysis..22
	 1.12	Risk management..24
	 1.13	Modeling and simulation...24

CHAPTER 2	 Generic Software Development Framework..................29
	 2.1	 Software breakdown structure...31
	 2.2	 Software development process..34

	 2.2.1	Requirements definition stage..35
	 2.2.2	Preliminary architecture definition stage............................36
	 2.2.3	Critical architecture definition stage...................................37
	 2.2.4	Software unit code and testing stage..................................38
	 2.2.5	Software component integration and testing stage.............39
	 2.2.6	Product testing stage...39
	 2.2.7	Acceptance testing stage...40

	 2.3	 Summary..41

CHAPTER 3	 Software Architecture.. 43
	 3.1	 Stakeholder needs relationships and dependencies.....................46
	 3.2	 �Software requirements baseline relationships and

dependencies..48
	 3.3	 Computing environment relationships and dependencies...........49
	 3.4	 Test and evaluation relationships and dependencies....................49
	 3.5	 Functional architecture relationships and dependencies..............50

vi Contents

	 3.6	 Physical architecture relationships and dependencies.................51
	 3.7	 Post-development process relationships and dependencies.........51
	 3.8	 Motivation for the software architecture......................................52

CHAPTER 4	 Understanding the Software Project Environment......55
	 4.1	 Integrated product teams..60
	 4.2	 Software architecture...61
	 4.3	 Complexity control mechanisms...63

	 4.3.1	 Work breakdown structure..63
	 4.3.2	 Product breakdown structure..64
	 4.3.3	 Specification tree..65
	 4.3.4	 Documentation tree..65
	 4.3.5	 Software product baselines...65
	 4.3.6	 Requirements traceability guidelines...............................67
	 4.3.7	 Trade-off analysis...68
	 4.3.8	 Software complexity measures...70

	 4.4	 Software nomenclature registry...74
	 4.5	 Software integration strategy...74
	 4.6	 Project and technical planning...75

	 4.6.1	 Technical organization plans..75
	 4.6.2	 Project plans...77

CHAPTER 5	 Software Integrated Product and Process
	 Development..79

	 5.1	 Application of IPPD to software..82
	 5.1.1	 Customer focus...84
	 5.1.2	 Concurrent development of products and processes........84
	 5.1.3	 Early and continuous life-cycle planning.........................86
	 5.1.4	 Maximize flexibility for optimization and use
		 of contractor unique approaches.......................................87
	 5.1.5	 Encourage robust design and improved
		 process capability...88
	 5.1.6	 Event-driven scheduling...88
	 5.1.7	 Multidisciplinary teamwork...88
	 5.1.8	 Empowerment...88
	 5.1.9	 Seamless management tools...89
	 5.1.10	Proactive identification and management of risk.............89

	 5.2	 Software engineering and development.......................................89

CHAPTER 6	 Impediments to Software Design......................................93
	 6.1	 Software as a raw material...95
	 6.2	 Evolution of software technologies...98

viiContents

	 6.2.1	Software development methods and standards.................101
	 6.2.2	Agile manifesto..105

	 6.3	 Architecture-driven software development................................108

SECTION 2	 SOFTWARE ENGINEERING PRACTICES
CHAPTER 7	 Understanding Software Requirements........................121

	 7.1	 Step 1: Soliciting stakeholder needs and expectations..............124
	 7.2	 Step 2: Requirement analysis and specification.........................127

	 7.2.1	Balancing and deconflicting stakeholder needs................129
	 7.2.2	Maintaining the scope of the project................................129
	 7.2.3	The availability of experienced software personnel.........132

	 7.3	 Step 3: Task definition and scheduling......................................132
	 7.4	 Step 4: Resource identification, estimation, and allocation.......133
	 7.5	 Step 5: Establish organizational work packages........................133
	 7.6	 Step 6: Technical planning...133
	 7.7	 Step 7: Project planning...134
	 7.8	 Exploring stakeholder needs..135

CHAPTER 8	 Software Requirements Analysis Practice..................139
	 8.1	 Project analysis tasks...140

	 8.1.1	Analyze project goals and objectives...............................141
	 8.1.2	Identify development success criteria...............................142
	 8.1.3	Solicit stakeholder needs and expectations......................142
	 8.1.4 	Prioritize stakeholder needs..144

	 8.2	 Operational analysis tasks..144
	 8.2.1	Identify operational concepts...145
	 8.2.2	Identify operational scenarios...145
	 8.2.3	Identify the computing environment characteristics........146
	 8.2.4	Identify external interfaces...147

	 8.3	 Product analysis tasks..147
	 8.3.1	Identify modes of operation..148
	 8.3.2	Identify functional behaviors..148
	 8.3.3	Identify resource utilization needs....................................150
	 8.3.4	Identify data processing conditional logic........................150
	 8.3.5	Identify data persistence needs...151
	 8.3.6	Identify data security needs..151
	 8.3.7	Identify data storage transactions.....................................152
	 8.3.8	Identify measures of performance....................................152

	 8.4	 Sustainment analysis tasks...152
	 8.4.1 	Identify post-development process
		 operational concepts...152

viii Contents

	 8.4.2 	 Identify post-development process
		 operational scenarios..153
	 8.4.3	 Identify post-development process characteristics.........153
	 8.4.4	 Identify architectural guidelines and principles.............154

	 8.5	 Project assessment tasks..155
	 8.5.1	 Assess requirements sensitivity......................................155
	 8.5.2	 Identify the software test strategy...................................155
	 8.5.3	 Assess proposed changes..156
	 8.5.4	 Assess project feasibility..157

	 8.6	 Establish the requirements baseline...157

CHAPTER 9	 Software Requirements Management.........................159
	 9.1	 Embracing change...160

	 9.1.1	 Time is a valuable resource..160
	 9.1.2	 Change impact analysis..162
	 9.1.3	 Adjusting project milestones..164

	 9.2	 Specifying requirements..166
	 9.3	 Requirements decomposition and allocation.............................168

	 9.3.1	 Functional analysis...169
	 9.3.2	 Performance allocation...169
	 9.3.3	 Structural unit synthesis...170
	 9.3.4	 Structural component synthesis......................................170

	 9.4	 Requirements traceability..170
	 9.4.1	 Change control..171
	 9.4.2	 Configuration audits...172

CHAPTER 10	 Formulating the Functional Architecture...................173
	 10.1	Motivation for the functional architecture.................................174
	 10.2	Functional architecture ontology...176

	 10.2.1	Functional component..176
	 10.2.2	Functional unit..177
	 10.2.3	Data item..177
	 10.2.4	Functional interface..177
	 10.2.5	External interface..178
	 10.2.6	Control structures...178
	 10.2.7	Resource...178
	 10.2.8	Data store..179

	 10.3	Conceiving the functional architecture......................................179
	 10.4	Documenting the functional architecture...................................181

	 10.4.1	Functional hierarchy...181
	 10.4.2	Behavior model...182
	 10.4.3	Functional timeline...183

ixContents

	 10.4.4	 Resource utilization profile...183
	 10.4.5	 Functional specifications..184
	 10.4.6	 Requirements allocation sheet......................................184

CHAPTER 11	 Functional Analysis and Allocation Practice...........185
	 11.1	Assess functional complexity..187
	 11.2	Behavioral analysis..189

	 11.2.1	 Identify functional scenarios..190
	 11.2.2	 Identify functional sequences.......................................190
	 11.2.3	 Identify data flows..191
	 11.2.4	 Identify control behaviors...192
	 11.2.5	 Identify data processing procedures.............................193
	 11.2.6	 Identify resource prerequisites.....................................194
	 11.2.7	 Identify failure conditions..194
	 11.2.8	 Identify systems monitoring procedures......................196
	 11.2.9	 Identify data retention capacity requirements..............197
	 11.2.10	Identify data security procedures..................................197
	 11.2.11	Identify data persistence and retention functions.........197

	 11.3	Performance allocation..198
	 11.3.1	 Allocate performance budgets......................................199
	 11.3.2	 Allocate resource budgets...199

	 11.4	Architectural assessment...200
	 11.4.1	 Assess requirements fulfillment...................................200
	 11.4.2	 Assess software performance.......................................200
	 11.4.3	 Assess architectural complexity...................................200
	 11.4.4	 Assess optimization opportunities................................200

	 11.5	Establish the functional architecture..200

CHAPTER 12	 Configuring the Physical Architecture........................203
	 12.1	Structural design solution..205

	 12.1.1	 Designating structural units..207
	 12.1.2	 Prepare structural unit specifications............................209
	 12.1.3	 Establishing the software integration strategy..............209
	 12.1.4	 Designating engineering assemblages..........................211
	 12.1.5	 Preparing the software technical data package.............211

	 12.2	Structural design considerations..211
	 12.2.1	 Structural design guidelines...211
	 12.2.2	 Use of modeling and simulation...................................215
	 12.2.3	 Behavioral analysis...216
	 12.2.4	 Structural trade-off analysis..217
	 12.2.5	 Software product performance evaluations..................217
	 12.2.6	 Software prototyping..222

x Contents

CHAPTER 13	 Software Design Synthesis Practice.............................227
	 13.1	Design conceptualization...230

	 13.1.1	Establish software architectural design guidelines.........230
	 13.1.2	Identify abstract structural components..........................233
	 13.1.3	Identify abstract user interface mechanisms...................233

	 13.2	Design resolution...235
	 13.2.1	Identify fundamental structural elements.......................235
	 13.2.2	Identify integrating components.....................................236
	 13.2.3	Assess software reuse opportunities...............................236

	 13.3	Design correlation..238
	 13.3.1	Establish performance benchmarks................................238
	 13.3.2	Identify structural design deficiencies............................239
	 13.3.3	Assess architectural alternatives.....................................240
	 13.3.4	Assess software implementation challenges..................241
	 13.3.5	Assess software sustainment challenges........................242
	 13.3.6	Assess architectural integrity..242

	 13.4	Design manifestation...244
	 13.4.1	Establish the structural design configuration..................244
	 13.4.2	Specify structural configuration elements......................244
	 13.4.3	Identify engineering assemblages...................................244

	 13.5	Prepare the software technical data package.............................244

CHAPTER 14	 Software Analysis Practice..247
	 14.1	Defining the trade study...250

	 14.1.1	Establish the trade-study scope......................................250
	 14.1.2	Identify the candidate alternatives..................................250
	 14.1.3	Establish the success criteria..251

	 14.2	Establish the trade-study environment.......................................251
	 14.2.1	Assemble the experimental mechanisms........................252
	 14.2.2	 Assemble the data collection and analysis mechanisms..... 253
	 14.2.3	Establish trade-study procedures....................................255

	 14.3	Conduct the analysis..255
	 14.3.1	Evaluate requirements alternatives.................................256
	 14.3.2	Evaluate functional alternatives......................................256
	 14.3.3	Evaluate structural alternatives.......................................257

	 14.4	Assess project repercussions..258
	 14.4.1	Assess developmental implications................................258
	 14.4.2	Assess project implications..258
	 14.4.3	Identify project execution strategies...............................259

	 14.5	Evaluate trade-study results...259
	 14.5.1	Prioritize architectural alternatives.................................259

xiContents

	 14.5.2	Determine the preferred course of action.......................260
	 14.5.3	Document the trade-study decision................................261
	 14.5.4	Promote the execution strategy.......................................261

CHAPTER 15	 Software Verification and Validation
	 Practice...263

	 15.1	Define the V&V strategy...265
	 15.1.1	Establish V&V scope..266
	 15.1.2	Establish V&V methods...270
	 15.1.3	Establish V&V procedures...270

	 15.2 	Verify the software architecture...271
	 15.2.1	Verify the requirements baseline....................................271
	 15.2.2	Verify the functional architecture...................................271
	 15.2.3	Verify the physical architecture......................................271
	 15.2.4	Verify the software implementation...............................272

	 15.3	Validate the physical architecture..272
	 15.3.1	Validate the structural configuration...............................272
	 15.3.2	Validate the integrated software configuration...............272

	 15.4	Document V&V results..273

CHAPTER 16	 Software Control Practice...275
	 16.1	Configuration administration...277

	 16.1.1	Identify architectural elements.......................................277
	 16.1.2	Maintain architectural status...278

	 16.2	Process engineering change packages.......................................279
	 16.2.1	Record engineering change requests and
		 proposals...279
	 16.2.2	Prepare change evaluation packages..............................279

	 16.3	Change evaluation..281
	 16.3.1	Assess change technical merits......................................281
	 16.3.2	Assess architectural consequences.................................282
	 16.3.3	Assess technical work package consequences...............282
	 16.3.4	Assess technical plan consequences...............................283

	 16.4	Change assimilation...283
	 16.4.1	Publish change notification package..............................283
	 16.4.2	Audit the architectural change progress.........................284
	 16.4.3	Appraise the project situation...284

	 16.5	Software repository control...284
	 16.5.1	Maintain engineering artifact repository........................285
	 16.5.2	Maintain change history repository................................285
	 16.5.3	Maintain technical risk repository..................................285

xii Contents

SECTION 3	 �STAGES OF SOFTWARE ENGINEERING
APPLICATION

CHAPTER 17	 Software Requirements Definition..................................291
	 17.1	Products of software requirements definition............................292
	 17.2	�Software engineering integrated product team

(software requirements definition stage)...................................295
	 17.3	Software implementation (software requirements

		 definition stage)...298
	 17.4	Computing environment preparation

		 (software requirements definition stage)...................................299
	 17.5	Post-development process implementation

		 (software requirements definition stage)...................................299
	 17.6	Software test and evaluation (software

		 requirements definition stage)..300
	 17.7	Reviews, milestones, and baselines (software

		 requirements definition stage)..301

CHAPTER 18	 Software Architecture Definition....................................305
	 18.1	Preliminary architecture definition..307

	 18.1.1	Products of preliminary architecture definition..............307
	 18.1.2	Software engineering integrated product team
		 (preliminary architecture definition stage).....................309
	 18.1.3	Software implementation preparation
		 (preliminary architecture definition stage).....................311
	 18.1.4	�Computing environment (preliminary architecture

definition stage)..311
	 18.1.5	Post-development process preparation
		 (preliminary architecture definition stage).....................312
	 18.1.6	�Software test and evaluation (preliminary architecture

definition stage)..312
	 18.1.7	Reviews and milestones (preliminary
		 architecture definition stage)..314

	 18.2	Detailed architecture definition..315
	 18.2.1	Products of detailed architecture definition....................315
	 18.2.2	�Software engineering integrated product team

(detailed architecture definition stage)...........................317
	 18.2.3	Software implementation (detailed architecture
		 definition stage)..318
	 18.2.4	Computing environment preparation
		 (architecture detailed definition).....................................319

xiiiContents

	 18.2.5	Post-development process preparation
		 (detailed architecture definition stage)...........................319
	 18.2.6	Software test and evaluation (detailed
		 architecture definition stage)..320
	 18.2.7	Reviews and milestones (detailed architecture
		 definition stage)..321
	 18.2.8	Establish the allocated baseline......................................322

CHAPTER 19	 Software Implementation..323
	 19.1	Products of software implementation..325
	 19.2	Software engineering tasks (software implementation

		 stage)..327
	 19.3	Software implementation tasks (software

		 implementation stage)..327
	 19.4	Computing environment tasks (software

		 implementation stage)..329
	 19.5	Post-development process tasks (software

		 implementation stage)..329
	 19.6	Software test and evaluation tasks

		 (software implementation stage)..330
	 19.7	Reviews and milestones (software implementation stage)........332

CHAPTER 20	 Software Acceptance Testing..335
	 20.1	Products of software acceptance testing....................................336
	 20.2	Software engineering (software acceptance testing stage)........337
	 20.3	Software implementation organization (software

		 acceptance testing stage)..338
	 20.4	Computing environment implementation organization

		 (software acceptance testing stage)...339
	 20.5	Post-development process organization (software

		 acceptance testing stage)..339
	 20.6	�Software test and evaluation (software acceptance

testing stage)..339
	 20.7	Reviews and milestones (software acceptance

		 testing stage)..340
	 20.8	Establish the software product baseline.....................................341

Index���343

This page intentionally left blank

xv

A Note from the Author

Several controversial subjects are raised by the material presented within the
book. These provocative topics address the scope of “software engineering” and
are central to the author’s motivation for publishing this material. If the Software
Engineering discipline was well established and proven to achieve successful
results, then there would be no need to publish and promote this material. However,
this is not the case. The success rate of projects within the software industry has
hovered around 30% for the past two decades. The failure of these projects can be
associated with two primary symptoms which can be observed in almost every soft-
ware development project and methodology. The first symptom involves an almost
complete misconception of what a software product design is and how to develop a
complete design description. The second symptom involves the lack of a standard
set of software engineering principles and practices which establish an appropriate
scope for a software engineering discipline.

The material presented in this book provides a comprehensive set of practices
which are integrated and tightly coupled. However, this material deviates with pop-
ular “best practices” which have been encouraged due to the lack of a flawless way
to design software. Some of my comments may seem critical; when suggesting an
approach to fix a flawed system, criticism is inevitable. The intent is to stimulate
the software community into a broad dialog by which a crucial set of software engi-
neering principles and practices can be established.

I hope that the reader can set aside his or her personal opinions concerning
mainstream concepts on software engineering. Do not let these controversial topics
divert your attention from the fundamental line of reasoning being discussed. This
book offers a rigorous, disciplined approach to the engineering of software prod-
ucts. It is time for the software community at large to take action to improve its
dismal performance. I hope that this material will prove beneficial to future genera-
tions of professional software engineers.

Richard Schmidt
April 15, 2013

This page intentionally left blank

xvii

Preface

The purpose of this book is to provide comprehensive treatment of the software engi-
neering discipline. The material presents software engineering principles and prac-
tices that are based on systems engineering. This book provides a detailed explanation
of the essential software engineering philosophy, which emphasizes a disciplined
approach to designing software products. To accomplish this, Section 1, Software
Engineering Fundamentals, discusses the software development framework and pro-
ject constructs within which software engineering is performed. Section 2, Software
Engineering Practices, presents six technical conventions that convey a philosophy for
harnessing computing technologies, applying scientific principles and invoking inge-
nuity to architect (i.e., design) the structure of software products. Section 3, Stages
of Software Engineering Application, discusses the role a software engineering team
undertakes within a software development project to establish and control the soft-
ware product architecture. Each stage of a typical software development project is
discussed with a focus on how a software engineering team collaborates with other
technical and project-related organizations to influence the architectural design and
implementation of software products. These sections clarify the practices, principles,
tasks, and artifacts associated with a disciplined approach to software engineering.

The fundamental concepts this material is based on were derived from systems
engineering practices to achieve the objectives identified in Table 1. These objectives
are achieved by applying a set of principles and practices derived from the systems
engineering discipline that have been successfully applied for over 50 years to develop
complex systems. The emphasis is on the establishment of a complete software archi-
tecture, which enables each element of the product to be specified for fabrication,
assembly, integration, and testing (FAIT). Applying these practices to the field of soft-
ware engineering provides the basis for resolving the challenges listed in Table 1.

Current practices for software analysis and design stem from computer pro-
gramming languages and the logical constructs by which the languages process
data. This has driven software design methodologies, such as object-oriented
design, that were not formulated to handle the complexity of advanced software
products. By adapting systems engineering practices, this book presents a com-
prehensive approach to designing a software product by establishing rigorous soft-
ware engineering principles and practices. These software engineering practices are
clearly articulated to ensure that there is no uncertainty concerning their importance
and applicability to software development. These practices are applied during a
walkthrough of the software development process to control, revise, and manage
the software architecture throughout a typical software development project con-
text. The contents of this book are aligned with the Software Engineering Body of
Knowledge1 (SWEBOK) key process areas identified in Table 2. This alignment

1 Institute of Electrical and Electronics Engineers (IEEE) Computer Society, http://www.computer.
org/portal/web/swebok.

http://www.computer.org/portal/web/swebok
http://www.computer.org/portal/web/swebok

xviii Preface

with the SWEBOK demonstrates how the topics addressed in the book are arranged
and associated with the topics addressed by the SWEBOK. However, the SWEBOK
is based on current software development practices and does not embrace the sys-
tems engineering practices in a rigorous, technical manner.

Book outline and subject matter
The following provides a brief overview of the content of each section and chapter
of this book. The sections arrange the material into three coherent topics intended
to permit readers to increase their knowledge and understanding of the principles
(Section 1), practices (Section 2), and application of software engineering (Section
3). By adapting systems engineering practices to the field of software engineering,

Table 1  Software Engineering Challenges and Objectives

Software Engineering
Challenge Objectives

Design must take place
before coding

Know what you are building before you begin to improve
cost and scheduling accuracy
Reduce product complexity with design detail and
precision
Cost, schedule, and risk control

Delivering the software
technical data package

Complete design diagrams, drawings, and specifications
for software implementation (construction)

Allocate requirements
among elements of the
design configuration

Requirements for decomposition and allocation among
software components and units
Requirements traceability

Integrated product and
process development
(IPPD)

Concurrent design and development of product
sustainment capabilities
Life-cycle costs control

Preparing a software
integration strategy

Planned software component integration developed
during architectural design activities
Efficient software implementation planning

Controlling software
complexity

Reduce software maintenance/support costs
Efficient, user-friendly interactions

Enabling change
assimilation

Stakeholder/user satisfaction
Product competitiveness

Trade-off analysis Cost and schedule control
Design optimization
Product evolution/incremental release stability
Increased probability of project success

Preplanned product
improvement

Delayed functionality to later releases to permit on-time
product delivery

xixPreface﻿

Table 2  SWEBOK Key Process Areas

Key Process Areas Book Coverage

Software requirements knowledge areas Section 1
Chapter 3

Section 2
Chapter 7
Chapter 9

Section 3
Chapter 17

Software design knowledge area Section 1
Chapter 3
Chapter 6

Section 2
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14

Section 3
Chapter 18

Software construction knowledge area Section 3
Chapter 19

Software testing knowledge area Section 3
Chapter 19
Chapter 20

Software maintenance knowledge area Section 1
Chapter 5

Section 3
Chapter 17
Chapter 18
Chapter 19
Chapter 20

Software configuration management
knowledge area

Section 2
Chapter 9
Chapter 16

Section 3
Chapter 20, configuration audits
addressed (FCA/PCA)

Software engineering management
knowledge area

Section 1
Chapter 4

Section 2
Chapter 9
Chapter 16, project and technical plans
addressed; work packages addressed
Section 3, project and technical plans
addressed; work packages addressed

Software engineering process
knowledge area

Section 2
Section 3

(Continued)

xx Preface

this material is intended to provide an innovative, disciplined, and technically
demanding approach to developing software products.

Section 1: Software engineering fundamentals
This section discusses the basic principles associated with software engineering
and their execution within a software development venue. The fundamental prin-
ciples, practices, and doctrine are presented to establish software engineering as a
professional discipline. Software product characteristics and software development
strategies are discussed to stress the challenges confronting software development
projects. Software engineering, as an organizational entity, bridges the notable dif-
ferences in outlook and perception that exist among technical and project man-
agement specialists. Therefore, this section addresses the integration of software
engineering practices with project management responsibilities and other software
development roles.

Chapter 1: Introduction to Software Engineering. This chapter provides an
overview of software engineering concepts, principles, and practices that are
necessary to cope with the challenges of designing and developing complex
software products. Software engineering practices and tools are investigated and
their relationships to project management mechanisms are identified.
Chapter 2: Generic Software Development Framework. This chapter dis-
cusses the progression of software development activities describing how the
software product is defined, designed, and implemented. This chapter tracks
a typical software development effort through a series of sequential stages
of development separated by project milestones and reviews. The discussion
addresses the relationship between the software technical and project manage-
ment realms of control.
Chapter 3: Software Architecture. This chapter identifies the composition
of the software architecture in terms of the software product, computing envi-
ronment, and post-development processes that enable product sustainment.
It relates the generation of architecture design representations, models, and

Table 2  SWEBOK Key Process Areas

Key Process Areas Book Coverage

Software engineering methods knowledge
area

Section 2
Chapter 13, Software Design Synthesis
Practice object-oriented methods
addressed, as applicable
Chapter 14, modeling and prototyping
addressed

Software quality knowledge area Section 3, identifies software quality
assurance tasks within test and evaluation
subsections

(Continued)

xxiPreface

documentation to technical and project-related mechanisms necessary to keep
the software development effort within budget and on track for scheduled
delivery. Techniques for establishing the software requirement specifications
are discussed, and functional and physical architectures are aligned with the
stages of software development. This chapter discusses how the software prod-
uct architecture provides the structural foundation for software implementation
(programmatic design, coding, integration, and testing), as well as product life-
cycle support.
Chapter 4: Understanding the Software Project Environment. This chapter
acquaints readers with the software product characteristics that cause software
development to be convoluted and incomprehensible. It addresses the software
product complexity challenges and relates those to the project constructs and
practices proven to facilitate successful software development endeavors. The
discussion provides insight that will help reduce project impediments, upheaval,
cancellations, and failures.
Chapter 5: Software Integrated Product and Process Development (IPPD).
This chapter presents the philosophy of IPPD and its impacts on project scope
and post-development considerations. It attempts to substantiate the need for a
well-conceived and structured software architecture to ensure that the product’s
useful life is extended as a result of engineering attention to life-cycle concerns
during development. The simultaneous engineering of software post-develop-
ment processes is examined to show how early architectural decisions can affect
life-cycle and ownership costs.
Chapter 6: Impediments to Software Design. This chapter examines the
underlying characteristics of software that cause its “design” praxis to be
unconventional and more difficult to fathom. It investigates the characteristics
of software as a design and construction material that challenges conventional
engineering scrutiny. This chapter presents the software engineering principles
that govern the design of software products. Finally, this chapter introduces the
software design chasm to contrive a resolution which permits software products
to be engineered and designed.

Section 2: Software engineering practices
This section identifies the six practices that contribute to the profession of software
engineering: (1) software requirements analysis, (2) functional analysis and alloca-
tion, (3) software design synthesis, (4) software analysis, (5) software verification
and validation, and (6) software control. Each practice is characterized by a num-
ber of tasks that every software engineering professional should comprehend. These
practices establish a coherent set of tasks focused on the design and elaboration of
the software product architecture.

Chapter 7: Understanding Software Requirements. This chapter presents
an approach to developing software requirement specifications that are derived
from stakeholder needs and expectations and contribute to determining the

xxii Preface

scope of the software development effort. Software specifications drive the defi-
nition of the software architecture, but should not infer any architectural design
scheme. Software requirements serve as the point of departure for deriving the
software functional and physical architectures. The architecture is engineered by
formulating a functional architecture and configuring the physical architecture.
Every element of the architecture must be specified and traceable back to the
software specifications. The relationships among software requirements, soft-
ware engineering tasks, and project and technical plans are examined.
Chapter 8: Software Requirements Analysis Practice. This chapter identi-
fies the specific tasks that must be selectively applied to establish the software
product and post-development process specifications. This practice involves the
allocation of performance quotas among lower-level functional and structural
elements of the software architecture. This practice begins with the effort to
solicit stakeholder needs and expectations and concludes with establishing a
software product requirement baseline.
Chapter 9: Software Requirements Management. This chapter discusses the
importance of controlling the software architecture in a proactive manner to
facilitate the assessment of proposed changes. Software requirement manage-
ment tools and practices are considered that enable a software engineering team
to perform pragmatic appraisals of the change impact to the software architecture
and the latitude of project resources to accommodate a desired alteration. The
intent is to equip the development team to react judiciously to authorized changes
and to assimilate modifications into the software architecture while not disrupting
project scope, plans, or progression toward a successful conclusion.
Chapter 10: Formulating the Functional Architecture. This chapter discusses
the nature of the functional architecture and how it is developed by decompos-
ing specified requirements into successive layers of functional elements. Each
functional element is specified in an approach of continual refinement that cul-
minates when a function is recognized to be uncomplicated and for which an
implementation can be realized. The functional architecture provides a logical
and coherent representation of the software product’s behavior in response to
stimulus, events, or conditions that arise within the computing environment.
Chapter 11: Functional Analysis and Allocation Practice. This chapter iden-
tifies the specific tasks that must be considered to ensure that a complete, con-
sistent, and traceable functional architecture is fashioned. Analysis is performed
to understand the operational and software product behaviors by examining,
decomposing, classifying, and specifying the top-level functions derived from
requirement specifications. Performance requirements are allocated among con-
tributing functions to establish measures of effectiveness and performance for
lower-level functional elements.
Chapter 12: Configuring the Physical Architecture. This chapter describes
the purpose and strategy for arranging and specifying the software product’s
physical architecture. The physical architecture identifies the foundational
building-blocks for software unit design, coding, and testing. The software

xxiiiPreface

integration strategy is developed to identify the product structure and prescribes
how the software units and components are to be incrementally combined, inte-
grated, and tested to form the complete software product.
Chapter 13: Software Design Synthesis Practice. This chapter identifies the
specific tasks that must be considered to ensure that a complete, consistent, and
traceable physical architecture is generated. Design synthesis is a proven sys-
tems engineering practice for transitioning from a pure functional representation
of a product to a physical configuration. It involves a “make-or-buy” trade-off
that corresponds to a software “implement-or-reuse” decision.
Chapter 14: Software Analysis Practice. This chapter identifies the specific
tasks that must be performed to conduct design-alternative trade-off analyses
and risk assessments. Architectural design decisions must be made with suffi-
cient insight to restrain growth in application complexity and software life-cycle
costs. The tasks associated with conducting a trade-off analysis and risk assess-
ment are described to provide a basis for understanding the nature of architec-
tural design decisions and their impact on the software development effort.
Chapter 15: Software Verification and Validation Practice. This chapter
identifies the specific tasks that must be performed to ensure that the elements
of the software architecture remain consistent and aligned with authorized
change proposals and requests. Verification tasks must be performed to ensure
that the software implementation and test and evaluation efforts are synchro-
nized with the software architecture specifications and design documentation.
Chapter 16: Software Control Practice. This chapter identifies the specific
tasks that must be selectively applied to ensure the software product architecture
reflects the current design concepts and incorporates authorized change propos-
als, requests, and design decisions. Requirements traceability must be embed-
ded within the software architecture and associated documentation so that the
technical team can promptly and efficiently respond to decisions of the change
control boards. In addition, it is necessary for authorized change proposals and
requests to be reflected in project and technical plans, schedule, budgets, and
work-package descriptions.

Section 3: Stages of software engineering application
This section discusses the roles and responsibilities assigned to technical organi-
zations throughout a software development project. The participation of technical
organizations in a software engineering integrated product team (IPT) is stressed.

Chapter 17: Software Requirements Definition. This chapter identifies the
manner by which the software requirement specifications are generated by the
software engineering IPT. The contributions of participating organizational
representatives are identified as the requirements for the software product, and
post-development processes are established.
Chapter 18: Software Architecture Definition. This chapter identifies the
manner by which the software functional and physical architectures are defined

xxiv Preface

during the preliminary and detailed architecture stages. These stages focus on an
IPPD approach to facilitate the establishment of the software implementation,
testing, and post-development process infrastructures necessary to facilitate the
fulfillment project objectives.
Chapter 19: Software Implementation. This chapter identifies the tasks to be
performed by the software implementation organization to programmatically
design, code, and test software units and conduct software integration and test-
ing. During this phase the post-development processes are implemented concur-
rently to support acceptance testing and the deployment readiness review.
Chapter 20: Software Acceptance Testing. This chapter identifies the tasks
to be performed by the software test and evaluation organization during the
conduct of software product acceptance testing. The roles of the participating
organizational representatives are identified as they monitor acceptance testing,
react to test failures and respond to software problem reports resulting from
acceptance testing. In addition, the post-development processes must be quali-
fied to confirm that they are ready to support software product distribution,
training, and sustainment operations.

SECTION

1Software Engineering
Fundamentals

This section provides an overview of the software engineering discipline to acquaint
readers with the lexicon used to describe software engineering principles, practices,
and tasks. Fundamentally, software is a unique material from which software prod-
ucts are crafted. The distinctive characteristics of software as a fabrication material
represent an enigma to software professional. The challenges associated with engi-
neering and designing software products is investigated to diminish the confusion
surrounding the various approaches to software engineering. Software engineer-
ing’s fundamental doctrine is established to provide a set of principles and practices
against which the software engineering discipline can be founded.

Foremost, this section introduces a lexicon for discussing the application of
sound software engineering techniques. The terminology inherent in this lexicon
coalesce accepted nomenclatures from a variety of professions, particularly systems
engineering, project management, and configuration management. This lexicon
is intended to combat the myriad of illegitimate terms thrown about the software
communities that enhance the confusion and difficulty associated with establishing

2 SECTION 1  Software Engineering Fundamentals

a set of standard practices. It is essential for the software industry to stabilize the
manner in which they discuss their professional practices with other engineering
professionals, stakeholders, and customers. It is not prudent to speak an alien dia-
lectal when attempting to illuminate technical challenges or the merits of design
ingenuity.

Professor Fred Brooks addressed the confusion caused by the various software
lexicons by discussing the Tower of Bable. His book The Mythical Man-Month:
Essays on Software Engineering1 identified the quagmire that erupted as a result of
the ever-expanding software dialects. Since its first publication, the software culture
had disseminated more programming languages, techniques, and methodologies in
the shortest span of time than any other vocation in the history of humankind. This
trend continues to disperse, diffuse, and magnify the communication barriers between
conventional engineering professions and software artisans and engineering impres-
sionists. Software engineering is a demanding occupation that can no longer afford
to promote undisciplined techniques and methodologies. Software jargon and dialects
must coalesce as a united lexicon based on established engineering terminology. The
quagmire stemming from the variety of software languages and methodologies threat-
ens to overwhelm the industrial and academic communities attempting to keep pace
with the endless stream of new and provocative software strategies.

Therefore, this section patiently explores the influences that surround the devel-
opment of a software product. These influences, or environmental variables, must
be appreciated for a software engineering effort to be successful. Therefore, this
section discusses the various technical and business motives that must be embraced
by any approach to engineering software products. Fundamentally, it is essential to
recognize that software products are intended to contribute to the financial pros-
perity of the businesses that adopt them, as well as the businesses that supply this
unique merchandise.

A major category of software products is intended to make businesses more
productive by automating routine, labor-intensive tasks. These software products
reduce a business’s reliance on manual data gathering, analysis, and manipulation,
especially where computational errors result in costly mistakes that could reduce
the profitability of an enterprise. The companies that develop software products
want to enjoy a beneficial compensation from the investment in the development of
the software product. Consequently, it is in the interest of both the software devel-
oper and the businesses using the software to ensure that the software development
project results in a proficient, user-friendly product that actually works properly.
However, the success rate associated with software development projects has hov-
ered between 25% and 30% throughout the two decades of the Standish Group’s
Chaos reports.2 Clearly, businesses are losing confidence in the software industry’s
ability to successfully deliver a product on time and within budget that actually

1 Brooks, F. (1975). The Mythical Man-Month: Essays on Software Engineering. Reading, MA:
Addison-Wesley.
2 See http://blog.standishgroup.com/pmresearch.

http://blog.standishgroup.com/pmresearch

3Systems engineering principles and practices

does what it is supposed to do. FAILURE! CHAOS! It does not seem to faze soft-
ware professionals that their reputation is so disgracefully tarnished.

Never fear, because there is always another self-proclaimed software guru ready
on the sideline with a new-fangled solution to software development. Another
approach, excitingly new terminology, and a flourish of activity as desperate mavens
leap aboard another bandwagon bound for somewhere. The software development
industry is desperately seeking a solution that significantly offers to bring some cred-
ibility to their defense. Software specialists fail to embrace the fundamental princi-
ples and practices encouraged by other engineering disciplines because software is
different than other products. How true! However, there may be some value from
garnering those engineering practices that may have applicability to the engineering
of software products.

This section provides six introductory chapters that set the stage for examining
software engineering principles and practices. This material is based on my experi-
ences applying systems engineering practices for the past two decades. My inves-
tigation into systems engineering was prompted by a 1989 congressional report
entitled “Bugs in the Program.”3 The findings and recommendations of this repots
included the following:

National Science Foundation should assure that computer science or software
engineering curricula should expose students to systems engineering concepts
throughout their education.

The Government’s present system for procuring software does not meet the
Government’s needs and wastes resources. The application of “systems engi-
neering” disciplines is needed to remedy the procurement system’s defects. …
Software Development is a complex process that requires modern “systems engi-
neering” techniques.

While the systems engineering discipline has promoted a cohesive set of prac-
tices for dealing with complex product development endeavors, they have been
improperly adapted to the unique nature of software products. Section 2 presents
the six practices associated with systems engineering. However, they have been
acclimated to the challenges of software development.

Systems engineering principles and practices
Systems engineering is a discipline that melds interdisciplinary technical disci-
plines and project management practices to develop architectural design challenges
associated with complex product development. It bounds the problem domain by
focusing on the product operational environment while considering the full product
life cycle. A typical system life cycle involves development, testing, manufacturing,

3 Bugs in the Program: Problems in Federal Government Computer Software Development and
Regulation, Staff Study by the Subcommittee on Investigations and Oversight, Congress, Sept. 1989.

4 SECTION 1  Software Engineering Fundamentals

distribution, training, operations, support, and disposal. The principles of systems
engineering include:

1.	 A system represents a complex, human-made product that involves hardware,
software, and human operators to work effectively. The system or product must
be understood in terms of its complete set of life-cycle processes, which impact
the feasibility of potential design solutions.

2.	 A product is a combination of interrelated parts organized into a complex
whole.

3.	 A product is human-made (designed, manufactured, tested, operated, and sus-
tained) for a specific, sometimes generalized, purpose. This eliminates “natural”
or “biological” systems from consideration as a system of interest.

4.	 The effectiveness of the product in operation is a result of the application of sys-
tem thinking, which attempts at understanding how parts influence, cooperate,
and collaborate with one another within a collective whole. This necessitates
understanding the effects of the operational environment on the performance of
the product and its constituent parts.

5.	 A product involves a hierarchical arrangement of smaller, less complex com-
ponents and parts. The design of a complex product cannot be derived without
decomposing the problem space into manageable problems for which one or
more technical solutions can be discriminated.

6.	 The system architecture represents the complete set of product life-cycle
requirements and the product functional and physical configurations that pro-
vide its technical description.

7.	 The product is realized when the individual parts or components are fabricated
(or procured), assembled, integrated, and tested.

These systems engineering principles can be easily adapted to a software prod-
uct. The computing environment provides the hardware component and represents
the major element of the operational environment. The software product is the
focus of the software engineering effort, and it must be designed to be operated
by end users. The set of software life-cycle processes differs slightly since soft-
ware is not manufactured or fabricated, and its methods of replication, distribu-
tion, and training may vary significantly from a system-based product that involves
hardware.

The practices associated with systems engineering were established in the early
1940s and have been proven to resolve large, complex system or product design
challenges. These practices involve:

●	 Requirements analysis
●	 Functional analysis and allocation
●	 Design synthesis
●	 Systems analysis
●	 Verification and validation
●	 Control

5Summary

These six practices, and their adaptation to apply to the engineering of software
products, is the main focus of this book. Section 2 provides the detailed definition
of these practices as they apply to software engineering. The titles of these practices
have been modified slightly to distinguish them from the systems engineering prac-
tices. This enables the same practices to be applied while acknowledging the differ-
ence in their application to solve a different design problem.

Summary
The chapters in this section provide a framework within which the software engi-
neering principles and practices are founded. The vocabulary used to present these
software engineering principles and practices has been carefully chosen to avoid con-
fusion. However, the language quagmire that exists in the software industry coupled
with potential conflicts in other engineering disciplines may impair the applicability
of the precise terms used to express these software engineering concepts. For the sake
of comprehending this manuscript, accept the terms used within the book as a means of
expressing underlying philosophies. Once they have served their usefulness, the terms
themselves may be discarded and replaced with more pleasing words and expressions.

Software development should be conducted in a project context. This estab-
lishes a relationship between the technical endeavor to design, implement, and test
a software product, and management and control mechanisms intended to ensure
that project expenditures, resources, and schedule milestones are satisfied. This
highlights the fact that all products must be designed to be manufactured and sup-
ported throughout their life cycle to achieve established cost and schedule objec-
tives. Terms like design-to-cost, design-to-support, and life-cycle costs denote that
a product has a perceived value, and the engineering of the product must ensure
that its value, as expressed in purchase price, operational costs, etc., is in line with
the benefits it offers its customers and stakeholders. Therefore, architectural design
decisions must account for the impact a design solution bears on project resources,
as well as the customer or consumer.

Architectural decisions will ultimately have the most substantial impact on soft-
ware development costs, as well as the effectiveness of the product throughout its
life cycle. Software is easy to modify, thereby stakeholders believe that there are
low costs to adding new features, functionality, or improved user interface mecha-
nisms. Architectural decisions affect the structure of the software product that facil-
itates its ability to be modified, extended, and enhanced. Therefore, it is essential to
understand what a software architecture looks like, how it is developed, and how it
is analyzed to facilitate shrewder design decisions. Architectural decisions establish
a structural framework for the software product that makes it resilient to elementary
changes. This resilience enables the software product to evolve during the software
development effort, as well as throughout its operational life cycle.

Furthermore, software engineering must embrace an integrated product and pro-
cess (IPPD) philosophy. IPPD development addresses the consideration of software

6 SECTION 1  Software Engineering Fundamentals

life-cycle complications during the engineering of the product. It encourages the
use of integrated product teams to ensure that an array of software technical disci-
plines is involved in architectural decision making. This ensures that a more robust
structural framework is established upon which to base the product realization. In
addition, IPPD emphasizes the concurrent establishment of post-development pro-
cesses and infrastructure. The software replication, distribution, training, and sus-
tainment processes must be available when the product is ready to be deployed.

The central theme of this manuscript is to present architectural-driven develop-
ment. This is fundamental to the software engineering paradigm that emphasizes the
importance of designing the complete software product before initiating the soft-
ware implementation activity (programmatic design, code, integration, and testing).
Software implementation represents the manufacturing of a software product, while
software replication represents the software production process. Manufacturing is to
produce something into a finished product using raw materials. Mass production is
the manufacturing of carbon copies of a finished product on a large industrial scale.
Software implementation involves the programmatic design, coding, and testing of
software units, modules, routines, objects, etc. These software units represent the
“raw material” utilized in the manufacturing of a software product. These software
units must be identified and specified to establish the physical architecture. Then,
these structural units must be assembled, integrated, and tested in a manner that
results in a complete software configuration item. This approach executes the FAIT
(fabrication, assembly, integration, and testing) convention used by international
standards4 on systems engineering.

Finally, this section presents the impediments to the design of software prod-
ucts due to software’s nonmaterial nature. It presents the software design chasm as
an illustration characterizing the difficulty associated with defining an architectural
framework for the structural configuration of a software product. It presents the soft-
ware engineering principles and practices that vanquish this dilemma and provides a
rigorous, disciplined approach to designing the software architecture.

4 ISO/IES 26702:2007, IEEE Standard for Application and Management of the Systems Engineering
Process, and IEEE 1220–2005, IEEE Standard for Application and Management of the Systems
Engineering Process.

7Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00001-X

Introduction to Software
Engineering 1

CHAPTER

CHAPTER OUTLINE

1.1  Specifying software requirements... 10
1.2  Software architecture.. 11
1.3  Integrated product and process development.. 12
1.4  Integrated product teams... 13
1.5  Work breakdown structure... 15
1.6  Software breakdown structure.. 15
1.7  Specification and documentation trees... 17
1.8  Integrated master plan and schedule.. 17
1.9  Reviews and audits.. 18

1.10  Configuration management and change control.. 20
1.11  Trade-off analysis.. 22
1.12  Risk management... 24
1.13  Modeling and simulation.. 24

This chapter provides an overview of software engineering as a discipline critical to
software product development. Software engineering, as described in this book, utilizes
proven practices and techniques derived from the systems engineering discipline. These
systems engineering methods and tools have been adapted to address the challenges
plaguing the software development industry. The resulting software engineering prac-
tices provide a more regimented approach to the development of software products.

Systems engineering practitioners have developed a set of principles and practices
that enable complex products to be designed and developed within a project frame-
work. Many of the challenges encountered by the systems engineering community
have been resolved through years of rigorous research, trial-and-error, and lessons
learned from past failures. The software development challenges that are targeted to
be resolved by adopting these proven systems engineering practices include:

1.	 Establishing the structure of complex products.
2.	 Managing interfaces with external systems or products.
3.	 Minimizing and mitigating risks to project success.
4.	 Making informed decisions by considering design alternatives and performing

trade-off analyses.
5.	 Evaluating change requests and proposals in a formal manner, which enables

the adoption of changes and maintains the scope of work to be performed within
established budgets and timelines.

http://dx.doi.org/10.1016/B978-0-12-407768-3.00001-X

8 CHAPTER 1  Introduction to Software Engineering

6.	 Balancing the demands of a diverse group of stakeholders.
7.	 Considering nonfunctional and product life-cycle challenges during product

design effort.
8.	 Allocating performance characteristics among contributing components.

Systems engineering techniques are used in complex projects: spacecraft design,
computer chip design, robotics, software integration, and bridge building. Systems
engineering uses a host of tools that include modeling and simulation, integrated
product teams, and scheduling to manage complexity. The Apollo program is a
leading example of a large, complicated project that successfully employed systems
engineering and has been cited as the greatest technological achievement in human
history.1 Both NASA and the Department of Defense have instituted systems engi-
neering and a primary ingredient in all major system development projects.2

The systems engineering practices that are employed to resolve these challenges
involve a number of technical and project management tools. Systems engineering
provides the intersection between technical and the project management objectives.
This interchange must be focused on ensuring that product design challenges, issues,
and solutions are properly communicated up the chain of command to project super-
visors so that instructions can be emanated down to the technical organizations. This
involves transforming and integrating technical strategies, plans, and schedule infor-
mation into project-level plans and milestones. These technical and project manage-
ment tools form the foundation upon which the software engineering discipline must
be defined. These project management and technical tools are discussed throughout
this book as a disciplined approach to software engineering is examined. The primary
technical and project management tools are listed in Table 1.1.

Table 1.1  Project Management and Technical Tools

Project Management Tools Technical Tools

Requirement specifications practices Software architecture
Integrated product and process development (IPPD) Integrated product team (IPT)
Work breakdown structure Work packages
Specification tree Documentation tree
Integrated master plan and schedule (IMP/IMS) Integrated technical plan and

schedule (ITP/ITS)
Project reviews and audits Technical reviews and inspections
Cost-benefit analysis Trade studies/trade-off analysis
Risk management Technical risk assessment
Change proposals Change requests

1 See http://history.nasa.gov/ap11ann/introduction.htm.
2 See http://spacese.spacegrant.org/uploads/images/Art_and_Sci_of_SE.pdf and www.incose.org/secoe/
0103/ValueSE-INCOSE04.pdf.

http://history.nasa.gov/ap11ann/introduction.htm
http://spacese.spacegrant.org/uploads/images/Art_and_Sci_of_SE.pdf
http://www.incose.org/secoe/0103/ValueSE-INCOSE04.pdf
http://www.incose.org/secoe/0103/ValueSE-INCOSE04.pdf

9Introduction to Software Engineering

These tools have been incorporated into software engineering practices that
have been devised to overcome the challenges associated with the design and
development of software products. Table 1.2 provides a matrix that identifies the
relationships between software development challenges and software engineering
practices and tools. Each of these practices are briefly examined in the following
paragraphs.

Table 1.2  Software Engineering Practices and Tools Mapping to Challenges

Challenges/
Tools and
Practices R

eq
ui

re
m

en
t

S
p

ec
ifi

ca
ti

o
n/

S
o

ft
w

ar
e

A
rc

hi
te

ct
ur

e

In
te

g
ra

te
d

 P
ro

d
uc

t
an

d
 P

ro
ce

ss

D
ev

el
o

p
m

en
t

In
te

g
ra

te
d

 P
ro

d
uc

t
Te

am
s

W
o

rk
 B

re
ak

d
o

w
n

S
tr

uc
tu

re
 P

ro
d

uc
t

B
re

ak
d

o
w

n
S

tr
uc

tu
re

S
p

ec
ifi

ca
ti

o
n

Tr
ee

 D
o

cu
m

en
ta

ti
o

n
Tr

ee

In
te

g
ra

te
d

 M
as

te
r

P
la

n
an

d
 S

ch
ed

ul
e

Te
ch

ni
ca

l P
la

ns
 a

nd
 S

ch
ed

ul
e

P
ro

je
ct

 R
ev

ie
w

s
an

d
 A

ud
it

s
Te

ch
ni

ca
l

R
ev

ie
w

s

C
o

nfi
g

ur
at

io
n

M
an

ag
em

en
t

C
ha

ng
e

C
o

nt
ro

l

C
o

st
-B

en
efi

t
A

na
ly

si
s

Tr
ad

e
S

tu
d

ie
s/

Tr
ad

e-
o

ff
 A

na
ly

si
s

R
is

k
M

an
ag

em
en

t
Te

ch
ni

ca
l R

is
k

A
ss

es
sm

en
ts

M
o

d
el

in
g

 a
nd

 S
im

ul
at

io
n

P
ro

to
ty

p
in

g

Structure
of complex
systems

X X X X X X X

External
interfaces

X X X

Risk mitigation X X
Design
alternatives

X X X X X X

Project
management
integration

X X X X X X

Multiple,
diverse
stakeholders

X X X X

Product
life-cycle
considerations

X X X X X

Product
performance

X X X

10 CHAPTER 1  Introduction to Software Engineering

1.1  Specifying software requirements
Establishing the requirements for a software product is a significant undertaking
and directs the course of action for the remaining software development effort.
Traditionally, requirements specifications address the overall product under devel-
opment and its external interfaces. However, an important practice employed by
most engineering disciplines is the specification of requirements for every element
of the product architecture or design. Therefore, there are significant implications
with this practice that demand that the complete software architecture be formu-
lated, including a specification for each element of the software product and associ-
ated post-development sustainment processes.

The software requirements specifications for the product guide the definition of
the product architecture, software implementation, and software test and evaluation
efforts. Requirements that are nonessential, overspecified, or introduce unaccepta-
ble risks place the project in jeopardy of being unsuccessful. This represents a situ-
ation where the software development team may attempt to do too much with too
little. Projects are constrained by the amount of resources available to produce a
product. Project budget and schedule objectives must be the primary focus when
establishing product requirements. This is complicated by a number of competing
factors that impede the formulation of a requirements baseline, including:

1.	 Multiple stakeholders each with their own insular desires associated with the
software product.

2.	 Competition and the desire for a larger share of the marketplace.
3.	 The need to establish the software development infrastructure, environments

(architecting, implementation, and testing), staffing, etc., which facilitate the
pursuit of project objectives.

4.	 The simultaneous development and establishment of post-development software
sustainment processes to maintain the product throughout its life expectancy.

5.	 Enterprise goals for return on investment and enhanced reputation within its
industry.

Every software product is intended to serve a purpose and the software require-
ments should represent those product features and performance factors that enable
the product to serve its purpose. Software products may support a business process,
control the operation of a system or process, support data gathering and analysis
activities, guide work productivity by automating mundane tasks, or provide some
entertainment relevance. Thus, there exists a significant cost-benefit motivation for
every software development undertaking that must be appreciated. Caution must be
taken when establishing software requirements that broaden the scope of the devel-
opment effort beyond the means of the project to achieve its objectives. Improperly
extending the software product scope sets the development effort on a path destined
for failure. Every requirement implies a level of effort necessary to devise a suitable
solution. Managing the scope of the software engineering undertaking is essential
to the success of each and every development project.

111.2  Software architecture

1.2  Software architecture
Software products are a combination of software routines, procedures, modules,
or objects that provide some functionality. Software, as a substance for developing
products, does not exhibit physical characteristics. Software is actually a language
that is transformed into electrical currents within a processing unit that permits
mathematical calculations. Software commands are translated, which permits data
manipulations or, for the sake of being precise, functions that represent a basic oper-
ation of a computer yielding a single result when invoked. Therefore, it is essential
that the software product be designed to address the full set of functional behaviors
that must be exhibited by the final product. The software architecture represents the
decomposition of requirements into the functions and subfunctions that are neces-
sary to provide the specified behavior and performance characteristics. Software
architecture refers to the art and science of designing and implementing software
products. It involves three partitions: 1) the product requirements; 2) the functional
architecture, which exhibits functional, performance and resource utilization char-
acteristics; and 3) the physical architecture which establishes the software product
structural configuration and relationships among structural elements.

The software architecture is analogous to the set of engineering drawings and
diagrams for a building. The construction of the building does not begin until the
set of drawings and diagrams have been drafted; are shown to conform to estab-
lished Uniform Building, Mechanical and Plumbing, and National Electrical codes;
and have been approved by the authorized regulatory agency. Similarly, the imple-
mentation (the design, coding, and testing of modules, etc.) of a software product
should not begin until the software architecture is complete, can be shown to be
consistent with the software requirements, and has been authorized by the project
lead to enter into the implementation stage of development. It is not advisable to
begin “construction” without understanding the full scope of the engineering
responsibility.

The software architecture establishes a complete design framework for a software
product that has been rigorously explored, refined, and scoped to be implementable
within established budget and schedule provisions. The term design is defined in the
Encarta Dictionary as “to make a detailed plan of the form or structure of something,
emphasizing features such as its appearance, convenience, and efficient function-
ing.” This definition identifies four important elements that are examined here as they
apply to the software architecture:

1.	 Detailed plan of the form or structure of something: The term plan implies a
set of engineering drawings depicting the various perspectives of a product’s
form or structure. The software architecture provides several types of design
diagrams, drawings, or views to represent the unambiguous structure and behav-
iors of the software product. These views are necessary to communicate the
architectural concepts to members of the software development team and other
stakeholders.

12 CHAPTER 1  Introduction to Software Engineering

2.	 Appearance: The mechanism by which the user or operator can observe, interact,
and control software operations. Typical user interface elements involve sounds,
notification lights, windows or forms, dialog boxes, and report formats. The appear-
ance of the software product may be casual for consumer products or may require
advanced human–machine interface designs aided by human factors specialists.

3.	 Convenience: The usability of the software product in terms of simplicity of
maneuvering between and among features to control processes, data entry, data
retrieval, data manipulation, and report generation.

4.	 Efficient functioning: This addresses the action or use for which the software
product is designed; its performance or the manner in which it functions, oper-
ates, or behaves; and the utilization of computing resources. The software
architecture must be designed to make the best use of available computing envi-
ronment resources, such as processing speed, data transfer rates, memory, data
storage, and communications bandwidth.

Clearly, the definition and design of a software product architecture demands a
rigorous approach, as well as techniques for capturing and expressing architectural
design characteristics. Software engineering involves several design challenges that
involve computing technology, software components, human factors engineering, as
well as interfaces with other systems or software applications. The software architec-
ture involves:

●	 The set of requirement specifications derived by interactions with the software
product stakeholders.

●	 Functional representations of the software behaviors and interactions among
users, operators, and external systems.

●	 The physical or structural arrangement of software “building blocks” and the
strategy for combining these software elements into a single, integrated product.

1.3  Integrated product and process development
IPPD is an organizational technique that provides a systematic approach to product
development. IPPD is focused on improving product quality through timely col-
laboration of relevant stakeholders throughout product development to better satisfy
stakeholder needs. A basic tenant of IPPD is to involve all technical disciplines at
the beginning of the development process to ensure that requirements are properly
gathered, understood, and specified. The intent of IPPD is to encourage developers to
consider all aspects of the product life cycle to ensure that the product architecture is
resilient to changes in operational and technological conditions. The IPPD philosophy
ensures that all technical and management organizations are represented by partici-
pating members of the software engineering integrated product team (SWE-IPT).

Requirements are developed initially at the software product level, then succes-
sively at lower levels as the requirements are decomposed and flowed down through-
out the software product architecture. This is different from a traditional software

131.4  Integrated product teams

development approach where software analysts perform the requirements definition
work and pass the requirements along to product design, implementation, test and eval-
uation, and post-development process engineers. This results in a loss of understand-
ing caused by asynchronous communications. The general approach for executing IPPD
is to form multidisciplinary teams for all products and post-development processes to
address technical issues, balance requirements, and help integrate the various teams.
Participation by technical and management groups will vary throughout the product life
cycle as the work transitions throughout the phases of software development.

1.4  Integrated product teams
The use of IPTs is a mechanism for ensuring that stakeholders, project manage-
ment, and technical organizations are represented throughout the software devel-
opment effort. A SWE-IPT involves representatives from the various stakeholder
communities and software development technical and management organizations.
Figure 1.1 depicts the representation associated with several software development
IPTs. The suggested software development IPTs are defined as:

1.	 Software engineering IPT: Represents the primary organizational entity respon-
sible for defining and controlling the software architecture, integrating technical
plans and schedules, conducting architectural trade studies and analyses, and
monitoring software development progress and risks.

FIGURE 1.1

Software integrated product team representatives.

14 CHAPTER 1  Introduction to Software Engineering

2.	 Software implementation IPT: Represents the organizational entity responsible for
implementing the software product by developing implementation plans and sched-
ules; designing, coding, and testing software building blocks (e.g., software units);
integrating and testing software components; and testing the integrated product.

3.	 Software test and evaluation IPT: Represents the organizational entity responsi-
ble for planning, detailing, and conducting software product acceptance testing.
Represents the customer, project manager, and enterprise in assessing the qual-
ity, performance, and characteristics of the software product under simulated or
actual operational testing.

4.	 Computing environment IPT: Represents the organizational entity responsible
for planning, defining, implementing, and testing the intended computing envi-
ronment the software product is being developed to operate within.

5.	 Post-development process IPT: Represents the organizational entity responsible
for planning, defining, and implementing the product replication, distribution,
training, and support processes.

An integrated product team is responsible for the definition of a product or pro-
cess throughout all phases of the product life cycle, including software architecting,
implementation, distribution, training, and support. A typical IPT might be composed
of software engineering, implementation, testing, and evaluation, and specialty engi-
neering (maintainability, safety, human factors, logistics, etc.), as well as including
customer and management representatives. Integrated product teams apply advanced
methods and tools for planning, information gathering, design trade-off analysis, and
modeling and simulation, which significantly improve IPPD effectiveness. Each IPT
strives to derive the following benefits of an IPPD3:

1.	 Reduced time to deliver a product. What were formerly sequential decisions can
now be made concurrently from an integrated perspective, with all stakehold-
ers accounted for. All decisions should be based on a system software life-cycle
perspective that minimizes the number and magnitude of changes during devel-
opment and deployment of the software. A subsequent reduction in extended
and expensive rework cycles has a positive impact on schedules and overall
software life-cycle costs.

2.	 Reduced system and product costs. Proper emphasis on IPPD at the beginning
of the software development process helps to optimize the product and process
funding profile. Pre-IPPD funding profiles based on historical data may no
longer be relevant. Early software project phases may require additional invest-
ment, but unit costs and overall life-cycle costs may be reduced due to fewer
design or engineering changes, better capability to meet schedule objectives,
and extensive use of trade-off analyses to reach cost-effective solutions.

3.	 Better risk mitigation. Team planning at the earliest stages of software develop-
ment promotes better understanding of available technologies and processes.

3 Software Acquisition Gold Practice, Integrated Product and Process Development (IPPD),
http://goldpractice.thedacs.com/practices/ippd/.

http://goldpractice.thedacs.com/practices/ippd/

151.6  Software breakdown structure

This, in turn, yields a better understanding of risk and its impacts on cost,
schedule, and performance. Effective risk assessment can result in methods or
processes for reducing or mitigating potential risks and establishing more realis-
tic cost, performance, and schedule objectives.

4.	 Improved product and process quality. Teamwork and management support
for continuous software product and process improvement results in improved
product and process quality for the enterprise and stakeholders.

1.5  Work breakdown structure
The work breakdown structure (WBS) is a project management tool for understand-
ing and establishing the scope of work for a software development effort. The WBS
is used to decompose the work packages that define the scope of the development
effort. Each top-level work package involves multiple technical and management
disciplines that must be involved in performing and controlling tasks. These work
packages are broken down into the specific tasks, budget allocations, deliverables,
and milestones for each organization contributing to a task. Each work package
should identify task dependencies with other tasks making up the WBS. The work
statements must be evaluated by each contributing organization to determine the
level of involvement necessary to enable task performance in accordance with estab-
lished policies and procedures. Organizational task estimates should be combined
and summed up to provide a complete estimate for the work to be performed. The
top-level work package’s labor, cost, and schedule parameters should be accumu-
lated to provide a basis for establishing project plans, budgets, and schedules.

The top several layers of the WBS provide the project’s skeletal definition of
work to be performed. The next several layers identify the set of integrated techni-
cal and organizational tasks to be performed. Further layers of WBS decomposition
should be developed, as necessary, to provide detailed technical and organizational
task estimates for the work to be accomplished.

The WBS must be developed incrementally as the software architecture is estab-
lished. This permits the WBS to address the technical and project-related work plans
to properly reflect the software architecture as it is developed. The software engi-
neering IPT is responsible for integrating, controlling, and maintaining the technical
elements of the project WBS. This is to ensure that the technical WBS conforms to
the evolving definition of the software architecture and properly reflects the technical
work to be performed.

1.6  Software breakdown structure
The technical inputs for the WBS are dependent on the software architecture, which
is defined and evolved until the critical design review (CDR). The software break-
down structure (SBS) represents the hierarchy of software elements that must have

16 CHAPTER 1  Introduction to Software Engineering

work allocated for their specification, implementation, and testing. The challenge
here is that the software architecture and resulting SBS morph over time as archi-
tectural design decisions are made. Architectural decisions may affect the software
requirements and functional and/or physical definitions. Figure 1.2 shows the evo-
lution of the SBS as the software architecture is defined and refined. With each
refinement of the software architecture, the work definitions and resource estimates
should become increasingly accurate and maintained within the scope of initial pro-
ject speculation.

The flow of software development stages follows a typical project sequence
of time-phased, incremental steps. The initial phase of development addresses the
product requirements. This is followed by a stage of design that establishes a func-
tional architecture that establishes what the software product must accomplish to
enable each operational data processing transaction. The third stage, detailed archi-
tecture definition, transforms the functional representation into a structural con-
figuration (physical architecture) that provides the elemental specifications and
guidance for software implementation. These three stages provide the detailed
architectural information, specifications, diagrams, and drawings to permit the
product to be implemented (fabricated, assembled, integrated, and tested). During
these first three stages of development, the software breakdown structure evolves in
depth (number of layers of decomposition) and in detail (technical accuracy). The

FIGURE 1.2

The evolution of the WBS.

171.8  Integrated master plan and schedule

software architecture, as it evolves, provides the structural information necessary
to establish the SBS. As a result of each stage of development the software archi-
tecture evolves to provide a more comprehensive and accurate description of the
software product. This permits the estimated work remaining to implement and test
the product to be increasingly accurate. The definition and evolution of the software
architecture leads to an evolution of the SBS, WBS, and technical and organiza-
tional plans and schedules.

1.7  Specification and documentation trees
The specification tree identifies the requirement specifications that must be pre-
pared to guide the design and testing for the software product and every element
of the product configuration. For a software product, the specification tree will
identify the requirement specifications associated with each software configura-
tion item, software external interfaces, and the computing environment. In addition,
each of the post-development processes (e.g., replication, distribution, training, and
support) should have a process specification prepared. The specification tree is a
project management tool where the required specifications are identified as formal
deliverables for the project.

The documentation tree is a technical management tool that addresses the
related specifications, design documents, drawings, and diagrams that are necessary
to be generated in support of the software development effort. It provides a com-
plete view of the set of documentation necessary to document the software prod-
uct and post-development sustainment processes. The documentation tree should
include all of the technical documentation, including technical plans, software
architecture descriptions, software development folders, test procedures, installa-
tion guides, and user manuals.

The SBS and specification and documentation trees are useful tools for under-
standing the actual progress of the software development effort and the readiness of
the product to transition to operations and sustainment. The SBS and documenta-
tion tree are also critical in determining the full impact of proposed changes and
their impact on the software development effort.

1.8  Integrated master plan and schedule
The IMP is an event-driven project plan that documents the significant accomplish-
ments to be achieved and associates each accomplishment to a key program event.
The IMS is a time-based schedule containing the networked, detailed tasks neces-
sary to ensure successful project execution. The IMS is traceable to the integrated
master plan, the WBS, and the statement of work or project directive. The IMS is
used to verify progress toward meeting program objectives, and to integrate sched-
uled program activities with the organizational and integrated technical plans.

18 CHAPTER 1  Introduction to Software Engineering

The WBS provides the basis for constructing project and technical plans and
schedules. There is a hierarchy of plans and schedules prepared by the various pro-
ject organizations. Figure 1.3 portrays a general hierarchy that associates the layers
of the WBS with the various organizational, technical, and project plans and sched-
ules. As the project, systems architecture, and WBS evolve in definition and clar-
ity, the details of organizational, technical, and project plans can be expanded. The
integrated technical plan is developed by integrating technical organizational plans
with the systems engineering plan. The IMP and IMS incorporate and summarize
the project and integrated technical plans and schedules.

The hierarchical development of these plans and schedules provides a sepa-
ration of concern so that the project management and technical organizations
can address their roles and responsibilities within the overall project context.
Determining the full impact of proposed changes on the project effort will require
that all of these plans and schedules are considered and the work packages revised
to provide a basis for incorporating a change into the project workflow.

1.9  Reviews and audits
A typical software development project is defined by a series of phases of time dur-
ing which the product is defined, designed, implemented and tested. Each phase of

FIGURE 1.3

Hierarchy of organizational, technical, and project plans and schedules.

191.9  Reviews and audits

activities concludes with a formal review of the product development status, and
involves most of the stakeholders. It is necessary to conduct technical reviews of
the software architecture, implementation, and test status to ensure that the techni-
cal organizations are prepared for project reviews. In addition, the IPPD philoso-
phy broadens the number and scope of these reviews to address the definition and
status of the software post-development processes. Figure 1.4 provides a concep-
tual schedule of technical reviews that support formal project reviews. Section 3
provides a detailed agenda for each formal review that addresses the project and
product status, key architectural decisions, proposed changes under review, and the
plans for the next stage of software development.

Technical reviews address the software product under development while the
post-development reviews address the development of post-development processes.
Technical reviews address the state of the evolving software requirements and func-
tional and physical architectures. The development effort then transitions to focus on
software implementation, which involves a series of technical reviews to assess the ade-
quacy of software programmatic designs, integration, and testing activities. The main
difference between project and technical reviews is the level of formality and participa-
tion. Technical reviews do not involve project management or stakeholder participation.

The post-development process reviews address the status of distribution, train-
ing, and support process definition and implementation. These processes must be

FIGURE 1.4

Series of project and technical reviews and audits.

20 CHAPTER 1  Introduction to Software Engineering

defined, designed, implemented, and qualified prior to the software product deploy-
ment readiness review to demonstrate that the software product has been completed
and is ready to be deployed into operations or distributed to customers or consum-
ers. The decision to deploy the software product must account for the state of each
of the post-development process development efforts.

1.10  Configuration management and change control
Configuration management maintains the coherent alignment of functional,
structural, and performance characteristics throughout the product’s life cycle.
Configuration management practices involve configuration identification, change
control, configuration status accounting, and configuration audits. These practices
are intended to ensure that the software product conforms to its specifications,
design, and operational and support documentation. Configuration audits ensure
that the final product configuration has been properly tested, all physical character-
istics are consistent with specifications, diagrams, drawings, users’ manuals, etc.,
as well as ensuring that all authorized changes have been incorporated into the con-
figuration data (artifacts).

Managing change is one of the most critical aspects of any development
effort. No development team can predict the numerous issues that will be encoun-
tered throughout a software development effort. The term develop has several
meanings, including to change and become larger, stronger, or more impressive;
and to become apparent and thus resolve a question or clarify a situation. This
implies that the problem space is not understood well enough at the inception of
a project to accurately define a plan or schedule that will not vary from its original
account. When considering change control, the following underlying facts must be
acknowledged:

●	 Projects are established to develop a software product and are driven by cost and
schedule objectives and resource constraints.

●	 Project planning establishes a roadmap that the project will initially proceed
to execute. As the development effort analyzes the problem space and solution
alternatives, project plans and schedule definitions must be revised to correctly
reflect the new understanding of the project outlook.

●	 Project management involves numerous control mechanisms for achieving
established project objectives including budgets, resource allocations, and risk
tracking.

●	 The software architecture provides the technical framework for establishing the
product structural configuration. This product configuration will evolve as more
detail is derived as a result of analysis, investigation, modeling, and prototyping.

●	 As the product configuration is meticulously detailed the product and WBSs
must be extended to provide the basis for revising technical plans, schedules,
and key milestone accomplishment criteria.

211.10  Configuration management and change control

●	 Cost and schedule objectives compel a project to make progress toward its
conclusion. External forces, such as customer and stakeholder needs and expec-
tations, computing technology, competition, and market conditions, apply pres-
sure for the project to divert from established plans.

These assertions suggest that project management and software engineer-
ing practices should be established in a manner that governs these diametrically
opposed forces. The goal-driven nature of a development project is focused on
developing and delivering a quality software product in a timely and cost-effective
manner. This warrants a strategy envisioned to insulate the project from sources of
change. The nature of the marketplace suggests that the software development pro-
ject must be cognizant of the ever-changing conditions occurring in the environ-
ment that will ultimately determine the acceptability and success of the software
product. The enterprise invests in the project by providing the people, facilities,
tools and equipment, and resources necessary for the project to be conducted.
Because of its investment, the enterprise desires to recognize a profit from the soft-
ware product, or it may aspire to improve its reputation within its industry as a reli-
able software development organization.

To properly cope with the dynamic forces of change, the central software engi-
neering philosophy must support a technical approach that facilitates the following
principles:

1.	 Change is inevitable! It is necessary to be able to distinguish which changes are
beneficial to adopt and which changes should be resisted or delayed until future
versions of the product.

2.	 Changes that are adopted must be able to be incorporated into the planning,
budgeting, and product configuration with a minimal amount of rework or
schedule interruption.

3.	 Every change represents a form of rework, unless the change is a totally new
requirement that does not interact with any other element within the software
architecture. However, even such an isolated change will require the project
plans and schedules to be updated to incorporate the revised work scope into
work packages.

4.	 Change affects the software architecture involving the software product or the
computing environment within which it is intended to operate. Change analysis
should be performed to understand the perceived impact caused by a change to
support a project determination to adopt the change. Depending on the state of
the software development effort, the amount of rework involved with incorpo-
rating a change will vary significantly. In some instances, a change may require
reperforming work that has already been accomplished. The scope of a change
can be determined by assessing the number of elements and interfaces within
the software architecture that are affected. This will provide an indication as to
the amount of existing design and implementation work that must be redone.
Review of the specification and documentation tree will support the change
impact determination.

22 CHAPTER 1  Introduction to Software Engineering

5.	 Before a change is adopted, the scope of the work package adjustments must be
understood to ensure that project cost and schedule objectives remain achievable.
The software engineering IPT must ensure that the impact of the proposed change
is thoroughly understood to support a cost-benefit analysis of adopting the change.

6.	 Change impact analysis should be sufficiently detailed to permit the authorized
change to be assimilated into the software architecture, technical plans, and
schedules without introducing additional risks to the success of the project.

The desire for a change may arise from sources external to the project, such
as customers, competition, or advances in computing technology, or from sources
within the technical team arising from an improved understanding of the architec-
tural solution. These internally proposed change requests may represent opportu-
nities to improve the solution or may identify modifications necessary to resolve
existing architectural deficiencies. These changes stemming from architectural defi-
ciencies should dominate the technical change control board’s attention since these
adjustments must be conducted within the existing scope of the technical effort.

Changes that arise from external sources represent unfunded change proposals
that are typically outside the scope of the current project in terms of the funding
and resources associated with the current work plan. Change proposals that impact
the scope of the planned technical effort must be authorized by the project’s change
control board to ensure that all stakeholders understand the cost and benefits asso-
ciated with the change authorization. Therefore, the term change request will be
used to refer to a change that does not change the funding or schedule profile of
the project, while change proposal will refer to a change that impacts the scope of
the planned effort. A change proposal must be accompanied by funding or schedule
relief before the project should consider authorizing the proposed change.

1.11  Trade-off analysis
There are numerous approaches for conducting technical, project, and business
analyses of a situation to gather information to aid decision-making. Cost-benefit
analysis (CBA) is a systematic process for calculating and evaluating the costs and
benefits of a proposed action. This analysis serves two purposes: (1) to determine
if the action is a sound, feasible, and viable undertaking, and (2) to compare it with
alternate approaches to accomplishing the same purpose. It involves comparing the
total expected cost of each alternative against the expected benefits to determine
whether the benefits outweigh the costs and by how much. This technique is useful
for project-level decisions since they must ultimately be addressed in a monetary
measure of utility. However, technical decisions require techniques that deal with
situations where design factors, such as performance or computing resource utiliza-
tion, do not lend themselves to financially based consequences.

Trade-off analysis provides an approach to architectural problem solving and deci-
sion making accompanied by uncertainty. In many situations, technical alternatives

231.11  Trade-off analysis

must be evaluated in terms of their relative merits to product performance, acceptabil-
ity, and success within the marketplace. Ultimately, the implementation of an architec-
tural solution must be quantified in cost-benefit terms if the solution affects the scope
of the project. Software engineering involves situations where the technical or design
challenge is within the established scope of the project. The aim is to make the best
architectural decisions despite uncertainty and unpredictable outcomes. Figure 1.5 pro-
vides an illustration relating the use of trade-off and cost-benefit analysis within the
technical and project domains of a development project.

Because trade-off analysis deals with uncertainty and sometimes unquantifiable
outcomes, innovative approaches have been developed to facilitate the evaluation of
merits of design alternatives. Quality function deployment (QFD) is a popular tech-
nique that has been used widely within the automotive and electronics industries
worldwide. QFD utilizes a matrix to arrange and correlate what the customer wants
(voice of the customer) against how a product can be designed to meet customer
wants. QFD, when used appropriately, may increase the cross-functional integra-
tion within organizations, especially between marketing, engineering, and software

FIGURE 1.5

Project and technical decision-making domains.

24 CHAPTER 1  Introduction to Software Engineering

implementation. QFD analysis can also be cascaded to address lower-level design
alternatives and solutions permitting the analysis to span the complete range from
customer to project scope and product architectural details.

1.12  Risk management
Risk management provides an approach to dealing with an uncertainty that has
been identified and threatens product or project feasibility. Risks that have been
identified are quantified in terms of their severity (potential consequence) and
likeliness (probability of occurring). Identified risks are rated as high, medium, or
low in both severity and likeliness, and entered into a risk tracking framework for
monitoring and reporting. Risk abatement approaches should be developed and a
risk management plan established that details the conditions or circumstances that
would indicate the manifestation of the risk and warrants activation of preven-
tive measures. Risks that rate high in severity as well as high in likeliness should
cause the project to revisit the software requirements or project scope to identify
approaches that eliminate, avoid, or diminish the threat of the risk manifestation.

Risks that have not been identified are a form of cancer to a project in that they
slowly, over time, cripple the project or endanger the ability to deploy the developed
software product successfully. Therefore, a central element of all software engineer-
ing trade-off analysis and architectural decision making involves risk assessment.
Trade-off analyses involve the evaluation of architectural alternatives and the relative
merits of each alternative. Risk assessments must be performed on each alternative
to ensure that potential risks are recognized before a decision is formulated.

Software development is a very complex undertaking and is littered with potential
hazards. Risk identification involves discovering, defining, describing, documenting,
and communicating risks before they adversely affect project fitness. An important
aspect of risk identification is to capture as many risks as possible. During the risk
identification activity, all possible risks should be considered. Risk identification is a
form of brainstorming that is best accomplished when the approach is unrestrained or
unstructured. Not all risks will be acted on and, once more details are gathered about
each risk, a decision can be made concerning the handling of unavoidable risks. It is
important to search the realm of what could happen, considering events or architec-
tural characteristics that have a potential for instigating challenging situations.

1.13  Modeling and simulation
Many engineering disciplines utilize modeling and simulation techniques to sup-
port design experimentation and analysis. Computer technology has provided an
undemanding means for constructing these models and eliminated the tedious use
of initial product articles as test subjects. The manufacturing industries now utilize
sophisticated computer-generated models or virtual prototypes to support design

251.13  Modeling and simulation

evaluation with significant success and cost savings. However, this concept of a vir-
tual prototype does not translate well into the software development community.

The software industry has embraced the prototyping concept as a means of
achieving timely and incremental deliveries of the software product. Many software
development strategies have adopted a prototyping philosophy. These methodologies
have deliberately introduced a calculated diversion into their software development
approach. By prototyping the software product, software personnel are permitted to
do what they do best—programming. By the time the prototype has reached a cer-
tain state of completeness, the majority of the time and labor available to the soft-
ware development project has been consumed. This travesty belies the appearance of
developing an “evolutionary prototype” that eventually must be acknowledged to be
the deliverable software product. (It looks like the product, was developed by the pro-
ject, therefore it must be the product!) This practice avoids the exertion of engineering
rigor necessary to establish a stable architecture upon which the software product can
be sustained and evolved. As the prototype is evolved by adding additional function-
ality, the fragility of the underlying architecture is destined to fracture. This is not a
legitimate or justifiable software engineering practice.

Prototypes are, by definition, a sample or model built to test a concept or to
behave as a design entity.4 Prototypes mimic or imitate a design entity in an attempt
to allow engineers and designers the ability to explore design alternatives, test the-
ories, and confirm engineering expectations. Prototypes serve to enable the speci-
fication of the product rather than basing the specifications on a theoretical or
contemplated engineering solution. Software prototyping is fundamentally an oxymo-
ron and, as such, is an unprofessional contradiction devised to permit software per-
sonnel to focus on coding rather than architecting the software product.

Software prototyping does serve a purpose in software engineering if used ethi-
cally and sparingly. Prototyping the graphical user interface (GUI) is an example of a
proper use of a software prototype. The GUI test article can be exposed to human test
subjects to gather human–machine interface data that can be used to refine the GUI
specification and design motif. Software prototypes should be undertaken prudently
to ensure that the information gathered (benefits of prototyping) merits the invest-
ment in the prototyping development. That’s right! Prototyping is a form of develop-
ment and the software prototype must be properly scoped, specified, designed, and
implemented before it can be used to gather engineering data or user feedback. This
suggests that many of the rigorous and meticulous practices associated with imple-
menting the software product may be disregarded to reduce the cost of prototype
development. However, this lack of rigor relegates the software prototype to a dispos-
able mockup. Fundamentally, no software code developed under prototyping condi-
tions should be utilized within a deliverable software product.

The different treatments of prototypes by traditional engineering disciplines and
the software community should be examined prior to adopting a software prototyp-
ing strategy. Table 1.3 provides a comparison of the use of prototyping by traditional

4 See http://en.wikipedia.org/wiki/Prototype.

http://en.wikipedia.org/wiki/Prototype

26 CHAPTER 1  Introduction to Software Engineering

Table 1.3  Comparison of Prototyping Strategies

Traditional Engineering Software Practices Disadvantages*

Proof of concept prototype
is used to test some
aspect of the intended
design without attempting
to exactly simulate the
visual appearance, choice
of materials, or intended
manufacturing process.

Rapid prototyping
refers to the creation
of a model that
will eventually be
discarded rather
than becoming part
of the final delivered
software.

Working prototypes
continually are tweaked,
enhanced, and incorporated
into the final product.

Form study prototype allows
designers to explore the
basic size, look, and feel of
a product without simulating
the actual function or exact
visual appearance of the
product.

Evolutionary
prototyping
constructs a very
robust prototype in a
structured manner and
constantly refines it.

Evolutionary prototyping
acknowledges that the
requirements are not well
understood and pays
attention only to those that
are well comprehended.

Visual prototype will capture
the intended design aesthetic
and simulate the appearance,
color, and surface textures
of the intended product but
will not actually embody
the function(s) of the final
product.

The final product
is built as separate
prototypes and the
separate prototypes
are merged in an
overall design.

Overall software architecture
does not exist and product
performance cannot
be ascertained until the
prototypes are integrated
and tested.

The full-scale prototype and
the ultimate test of concept
is the engineers’ final check
for design flaws and allows
last-minute improvements
to be made before larger
production runs are ordered.

The focus on a limited
prototype can distract
developers from properly
analyzing the complete
project. This can lead
to overlooking better
solutions, preparation of
incomplete specifications,
or the conversion of limited
prototypes into poorly
engineered final projects that
are hard to maintain.

User experience model
invites active human
interaction and is primarily
used to assess how potential
users interact with various
elements, motions, and
actions of a design concept.

Prototyping is supposed to
be done quickly. Developers
may try to develop a
prototype that is too
complex. Users can vacillate
over details of the prototype,
holding up the development
team and impeding
development progress.

*See http://en.wikipedia.org/wiki/Software_prototyping.

http://en.wikipedia.org/wiki/Software_prototyping

271.13  Modeling and simulation

engineering and by popular software methodologies. Traditional engineering dis-
ciplines utilize prototypes to support experimentation and data collection to con-
firm some critical feature of a product design. The prototype is not considered a
production-ready model, but is used to work through design challenges and explore
important design concepts.

The software industry is challenged by prototyping since its products do not have
any discernible physical characteristics that would prevent their inclusion in the ulti-
mate product. Once software code is written and demonstrated to function properly,
it is difficult to discard the prototype and spend additional effort on the design, devel-
opment, and testing of the production-quality software product. Software prototypes
are not often constructed utilizing the rigors of software design and coding stand-
ards. This makes them inadequate to be included in the final, deliverable product, and
will increase the effort associated with software support and incremental develop-
ment. Software engineers are not inclined to value the lessons learned from proto-
types and to spend additional effort reconstructing the software component through
design, coding, and testing. The working prototype may be “cleaned-up” to conform
to design and coding standards, but its architecture may prohibit future modifications
or enhancements. Ultimately, the software product may have to undergo a complete
rearchitecting to overhaul design limitations and obstacles stemming from an unstable
structural framework resulting from prototyping efforts.

The remaining chapters in this section address the software development envi-
ronment within which software engineering is applied. These topics include a
generic development project framework, software architecture, how to contend with
project complexity, and the integrated product and process development approach.
Chapter 6 examines the material challenges that cause the engineering of software
products to be more perplexing than mechanical, electrical, aeronautical, automo-
tive, thermal, or chemical-based systems. In addition, Chapter 6 presents an over-
view of software engineering principles and practices.

This page intentionally left blank

29Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00002-1

Generic Software
Development Framework 2

CHAPTER

CHAPTER OUTLINE

2.1  Software breakdown structure.. 31
2.2  Software development process... 34

2.2.1  Requirements definition stage..35
2.2.1.1  Product requirements review.. 35
2.2.1.2  Software requirements review... 35

2.2.2  Preliminary architecture definition stage...36
2.2.2.1  Preliminary architecture review.. 36
2.2.2.2  Deployment strategy review.. 36
2.2.2.3  Training strategy review.. 36
2.2.2.4  Sustainment strategy review... 37
2.2.2.5  Preliminary design review... 37

2.2.3  Critical architecture definition stage...37
2.2.3.1  Detailed architecture review... 37
2.2.3.2  Deployment design review.. 37
2.2.3.3  Training design review.. 38
2.2.3.4  Sustainment design review... 38
2.2.3.5  Critical design review... 38

2.2.4  Software unit code and testing stage..38
2.2.4.1  Unit design review (peer evaluation)... 38
2.2.4.2  Unit qualification review (peer evaluation).................................... 39

2.2.5  Software component integration and testing stage................................39
2.2.5.1  Integration readiness review (peer evaluation).............................. 39
2.2.5.2  Product testing readiness review.. 39

2.2.6  Product testing stage..39
2.2.6.1  Acceptance testing readiness review.. 39
2.2.6.2  Testing readiness review.. 40

2.2.7  Acceptance testing stage...40
2.2.7.1  Functional configuration audit.. 40
2.2.7.2  Physical configuration audit... 40
2.2.7.3  Deployment qualification review... 40
2.2.7.4  Training qualification review... 41
2.2.7.5  Sustainment qualification review.. 41
2.2.7.6  Deployment readiness review... 41

2.3  Summary... 41

http://dx.doi.org/10.1016/B978-0-12-407768-3.00002-1

30 CHAPTER 2  Generic Software Development Framework

Throughout this book a generic software development framework is utilized to iden-
tify and consider compelling software engineering propositions. Without this frame-
work, software engineering cannot be understood or expressed since it operates
within a project environment undertaking a software development objective. This sug-
gests that the practice of software engineering is always carried out within a software
development project environment. It is not possible to discuss software engineering
without broaching the topics of software development or project management. This
implies that software engineering is closely related and integral to software project
management. However, because it represents a technical discipline, software engi-
neering must emphasize the techniques employed to design, implement, and maintain
software products. Therefore, the discipline of software engineering must stress the
nature of this technical burden while accentuating its affiliation with software pro-
ject management or a larger system development project management framework.
Fundamentally, software engineering represents the supervisory function that bridges
the technical effort with the project management domain.

This chapter establishes the vernacular that will be utilized to convey the prin-
ciples and practices that form a software engineering branch of knowledge. Several
dominant concepts are revealed and examined to initiate our investigation of soft-
ware engineering. These concepts address fundamental observations concerning
what is a software product, how software is fashioned in a project context, and how
some of the basic management tools are utilized to organize, monitor, and keep a
software development project directed toward successful completion. It is impor-
tant to comprehend these concepts because the software engineering philosophy
and principles are dependent on this foundation and will be expressed utilizing this
lexicon. Even the term software has a specific meaning that is similar to, but more
influential than, the term product. Therefore, every technical term or expression
used throughout this book has a specific connotation, and the use of one term over
another designates a precise meaning.

The expression of a generic software development framework is predicated on
understanding the term software. Similar to the word system, software has been
overburdened with connotations to the point that its value as a means to commu-
nicate has been lost. Therefore, the term software will be examined so that its use
throughout this material will be apparent. The software development framework is
discussed to provide a frame of reference within which software engineering tech-
niques and practices can be investigated. When software development is mentioned
it should invoke a project representation with several increments of time separated
by project milestones and reviews. Software development shares both a project and
a product creation connotation. The development of a software product must pro-
gress through several natural stages of evolution. The software development pro-
cess involves a series of development stages through which the software product
progresses. These basic stages of software development are requirements, design,
implementation, and testing.

Development process Project stages Product stagesof developmen→ → tt

312.1  Software breakdown structure

2.1  Software breakdown structure
To truly grasp the meaning or nature of a software product its structure must be
understood. Software, as a product, should not be thought of as a sequence of
lines of code that provides instructions to a computer processor or data process-
ing systems. Lines of code represent the medium by which software products are
implemented, much like a house is constructed by lumber, bricks, pipes, and wire.
A house is a product that must be architected and designed before it is built.
Software is a revolutionary form of product since its medium is electronic in nature.
This makes software intangible, meaning it “cannot be touched.”1 This does not
eliminate the need for a software product to be designed, implemented, and tested
before it is made available for deployment or operation. Using a house again as
a point of reference, the house design is generated by an “architect” trained in
the planning, design, and oversight of the construction of buildings. The architect
understands the engineering challenges associated with the construction of a house,
and utilizes certain materials in its design to accommodate the structural and natu-
ral forces that bear on the structure. Upon the completion of the engineering draw-
ings, the architect prepares a “bill of materials,” which is a list of the raw materials
and building products, and the quantities of each needed to build the house.

Most human-made products are comprised of multiple assemblies, components,
or parts. The bill of material for a house provides an itemized list of supplies and
building products needed for the house to be constructed. Therefore, it is reasonable
to apply this concept to a software product. However, because software is intangible,
it is intimately associated with the particular computing environment or data process-
ing system it is designed to perform with. Therefore, it is not possible to distinguish
a software product from its computing environment, as depicted in Figure 2.1. As the
software breakdown is expanded it will provide a basis for discussing the software
development framework.

The concern of software engineering is the further composition of the soft-
ware product. There have been many terms used to identify the building blocks
or elements that comprise software products, including function, procedure, rou-
tine, subroutine, application, and object. These terms stem from the individual or

FIGURE 2.1

First layer of a software breakdown.

1 See http://en.wikipedia.org/wiki/Computer_software.

http://en.wikipedia.org/wiki/Computer_software

32 CHAPTER 2  Generic Software Development Framework

teams who produced the computer languages and compliers who translate code into
machine-executable instructions. To discuss the software breakdown it is necessary
to utilize terms that do not carry superfluous connotations. The terms must indicate
a relative position within the product hierarchy or structural configuration. This will
be facilitated by the use of component and unit. Component infers a part, ingredi-
ent, or constituent forming a part of something larger. More importantly, per the
Encarta Dictionary, component is used to define an assembly as “a set of compo-
nents before they are put together to make a finished product.” From this it can be
inferred that a software component represents an element of the software break-
down structure (SBS) from which the final product is assembled. Component also
is flexible enough to accommodate its use to represent several layers of assembly,
as illustrated in Figure 2.2.

This structural concept works well with the exception that it implies a never-
ending hierarchy of components. Therefore, it is necessary to establish a soft-
ware building block that will terminate the hierarchy. For this, the term unit will
be used. A software unit represents the basic element or part of a software product
from which initial software components will be assembled. The Encarta Dictionary
defines unit as “an individual or discrete part or element into which something can
be divided, especially for analysis.” Thus, a software unit represents a discrete ele-
ment of the SBS from which a software component can be assembled. Figure 2.3
depicts an example of a SBS.

Throughout the material presented in this book the terms component and unit
will refer to the position or station the software element has relative to the hierar-
chy of software elements. A software unit is the basic building block and does not
involve any decomposition or further breakdown. A software component represents

FIGURE 2.2

Layers of software components within the SBS.

332.1  Software breakdown structure

an element that is comprised of two or more software units and/or components, as
depicted in Figure 2.3.

The challenge presented by this breakdown view is why there is a need to dif-
ferentiate the term software from software product. Is the association with the com-
puting environment significant enough to transmit the meaning associated with the
terms product, component, and unit? This is better explained by examining the con-
cept behind software development. Just like the architect addresses the design of
a house, there are other aspects of the construction effort beyond the design of the
house itself. Things that must be considered involve positioning the structure of the
house onto a plot of land, access to a street, a source electrical power, water, and
sewage. These peripheral factors affect the design of the house and its structure and
must be integral to the overall architectural aptitude and exactness.

The peripheral factors that must be addressed during software development
involve how the software product will be sustained after the product is released,
delivered, installed, and deployed. The systems engineering branch of knowledge
has formulated an integrated product and process development concept to address
the concurrent engineering of the product and life-cycle sustainment concepts.
When this paradigm is applied to software it captures the peripheral factors associ-
ated with the post-development processes. Just like software development can be
referred to as a development process, software product distribution, user operational
training, and product support and maintenance can be regarded as processes. The
inclusion of the integrated product and process development (IPPD) concept within
the SBS results in a software hierarchy identified by Figure 2.4.

FIGURE 2.3

Layers of software components and units within the software breakdown structure.

34 CHAPTER 2  Generic Software Development Framework

Each of the post-development processes represents a significant endeavor to
define, design, implement, and establish the requisite facilities, computing environ-
ment, networks, etc. needed to enable the deployment of the software product after
the development effort has been concluded. These processes must be developed in a
timely manner to ensure that they are available when the software product is ready
for deployment. The effort to establish these processes should be situated within
the software development effort as subordinate projects since members of their staff
will be required to participate in the software engineering integrated product team
(SWE-IPT) to contribute their perspectives to the definition of the software prod-
uct. This will necessitate inclusion of these efforts within the software development
planning, budgeting, and scheduling tasks.

2.2  Software development process
Software development has always followed a sequence of stages once it emerged
from the laboratory environment of advanced research. The most fundamental set of
stages involves requirements, design, coding, and testing. This simplistic representa-
tion of software development aligns with most project management approaches and
has been adapted over time as the size, complexity, and costs associated with soft-
ware products has increased. Alignment of software development with these project
management and IPPD principles generates a framework, with a series of stages,
milestones, and reviews intended to accommodate software as a standalone product
or as a product embedded within a system. Figure 2.5 depicts a conceptual frame-
work for software development projects. It is conceptual in that it deviates from
established literature by identifying software technical reviews that are necessary to
prepare for the project review. Technical and project-level reviews are strategic points

FIGURE 2.4

Full software breakdown structure.

352.2  Software development process

in the development effort where it is constructive to review the evolving product defi-
nition with important stakeholders. Milestones represent a significant achievement in
the development of a new software product and permit the investors to determine the
values in proceeding with the next development stage. These software development
stages, reviews, and audits are described in the following sections.

2.2.1  Requirements definition stage
During this development stage the project team interacts with all stakeholders to
gather, analyze, and prioritize a set of needs and expectations concerning the soft-
ware product to be developed. Requirements specifications are prepared to docu-
ment the agreed-to set of product functions, features, and characteristics that shall
be present when the product is delivered. An initial set of requirements for the post-
development software sustainment (PDSS) processes may be captured within the
product specification or as one or more related specifications.

2.2.1.1  Product requirements review
The product requirements review (PRR) is a technical review of the software prod-
uct requirement specifications with participation of the software technical and man-
agement staff. The purpose is to ensure that the software product requirements are
sufficiently specified and collectively complete and achievable within established
software development resources. The PRR is necessary to ensure that the software
requirement specifications and technical plans and schedules position the software
development effort for successful execution. The PRR should be conducted in prep-
aration for the project-level software requirements review.

2.2.1.2  Software requirements review
The software requirements review (SRR) is a project-level review with stakehold-
ers and project management representatives to review the software requirement
specifications, and gather feedback on the requirements, product qualification

FIGURE 2.5

Conceptual software development framework.

36 CHAPTER 2  Generic Software Development Framework

requirements (testing, analysis, inspection, and demonstration), PDSS concepts,
and plans for the next development stage. The SRR is determined to be complete
when all action items or comments generated by the review have been satisfactorily
resolved.

2.2.2  Preliminary architecture definition stage
During this development stage the SWE-IPT establishes the functional architec-
ture for the software product by conducting functional analysis and allocation.
Alternative functional designs should be evaluated and compared utilizing the soft-
ware analysis approach for performing risk assessments and trade-off analysis. The
models, design documentation, and initial data dictionary should be prepared. The
PDSS processes should be defined and their requirements documented in one or
more process specifications.

2.2.2.1  Preliminary architecture review
The preliminary architecture review (PAR) is a technical review of the evolv-
ing software architecture that is intended to ensure that the architectural solu-
tion is ready for the preliminary design review. The emphasis is on the functional
architecture and initial structural configuration of the software product. This tech-
nical review involves the software development team and key stakeholders for
the purpose of evaluating the preliminary architecture definition to ensure that
it adequately satisfies the software requirements and stakeholder needs, and is
uncomplicated (noncomplex) and can be implemented within established software
development resources.

2.2.2.2  Deployment strategy review
The deployment strategy review is a technical review of the software deployment
approach to product replication, packaging, distribution, and installation and setup,
as necessary. This strategic review identifies the preferred approach(es) to soft-
ware replication and distribution and the business process concepts for these post-
development processes. The review should address the infrastructure items that
would be necessary to enable the processes and support staff required for their
operation. An initial requirement specification for each business process should be
reviewed and baselined upon the completion of the review.

2.2.2.3  Training strategy review
The training strategy review is a technical review of the software training approach
to end-user training and education on the operation of the software product. This
strategic review identifies the preferred approach(es) to software training and edu-
cation and the business process concepts for this post-development process. The
review should address the infrastructure items that would be necessary to enable the
process and support staff required for their operation. An initial requirement speci-
fication for the software product training process should be reviewed and baselined
upon the completion of the review.

372.2  Software development process

2.2.2.4  Sustainment strategy review
The sustainment strategy review is a technical review of the software sustainment
approach to customer and software support for the software product. This strategic
review identifies the preferred approach(es) to customer and software support and
the business process concepts for these post-development processes. The review
should address the infrastructure items that would be necessary to enable the pro-
cess and support staff required for their operation. An initial requirement specifica-
tion for software customer and software support processes should be reviewed and
baselined upon the completion of the review.

2.2.2.5  Preliminary design review
The preliminary design review (PDR) is a project-level review with stakeholders
and project management representatives to review the software functional archi-
tecture, and gather feedback on the functional definitions, performance allocations,
behaviors, data definitions, functional specifications, and plans for the next devel-
opment stage. The PDSS process specification(s) may be reviewed at the product
PDR or at a separate review with a more limited set of stakeholder representatives.
The PDR is determined to be complete when all of the accepted action items or
comments generated by the review have been satisfactorily resolved.

2.2.3  Critical architecture definition stage
During this development stage the SWE-IPT establishes the physical architec-
ture for the software product by conducting software design synthesis. Alternative
structural designs should be evaluated and compared utilizing the software analy-
sis approach for performing risk assessments and trade-off analysis. The PDSS
processes should be designed and documented during this stage. Process models
should be generated to verify the capacity of each process to handle anticipated
demand.

2.2.3.1  Detailed architecture review
The detailed architecture review (DAR) is a technical review of the complete soft-
ware architecture that is intended to ensure that the architectural solution is ready
for the preliminary design review. The emphasis is on the physical architecture
that establishes the structural configuration of the software product. This technical
review involves the software development team and key stakeholders for the pur-
pose of evaluating the detailed architecture definition to ensure that it adequately
satisfies the software requirements and stakeholder needs, and is uncomplicated
(noncomplex) and can be implemented within established software development
resources.

2.2.3.2  Deployment design review
The deployment design review is a technical review of the software deploy-
ment process design and implementation plan. The review should specify the

38 CHAPTER 2  Generic Software Development Framework

infrastructure items and staffing necessary to enable the process. The process
specifications and design documentation should be baselined and the deployment
process organization authorized to execute the implementation plan upon final
approval.

2.2.3.3  Training design review
The training design review is a technical review of the software training process
design and implementation plan. The review should specify the infrastructure items
and staffing necessary to enable the process. The process specifications and design
documentation should be baselined and the training process organization authorized
to execute the implementation plan upon final approval.

2.2.3.4  Sustainment design review
The sustainment design review is a technical review of the software sustainment
process design and implementation plan. The review should specify the infrastruc-
ture items and staffing necessary to enable the customer and software support pro-
cesses. The process specifications and design documentation should be baselined
and the sustainment process organization authorized to execute the implementation
plan upon final approval.

2.2.3.5  Critical design review
The critical design review (CDR) is a project-level review with stakeholders and
project management representatives to review the software physical architecture
and gather feedback on the functional definitions, performance allocations, behav-
iors, data definitions, functional specifications, and plans for the next development
stage. The PDSS designs may be reviewed at the product CDR or at a separate
review with a more limited set of stakeholder representatives. The CDR is deter-
mined to be complete when all of the accepted action items or comments generated
by the review have been satisfactorily resolved.

2.2.4  Software unit code and testing stage
During this development stage the software implementation team prepares the unit
designs and conducts peer reviews with the implementation IPT. Upon acceptance
by the peer review, unit designs are then coded and tested against the structural unit
specifications. Tested units should be reviewed by the implementation IPT, and
upon acceptance, finished units should be made available for component integration
and testing.

2.2.4.1  Unit design review (peer evaluation)
Each implementation unit should undergo a unit design review to evaluate its
design to ensure compliance with the structural unit specification. The review
should be conducted by a senior member of the software implementation team with
a representative from the SWE-IPT in attendance.

392.2  Software development process

2.2.4.2  Unit qualification review (peer evaluation)
Each implementation unit should undergo a unit qualification review to assess its
operational behaviors under test conditions and its satisfaction of the structural unit
specification. The review should be conducted by a senior member of the software
implementation team with a representative from the SWE-IPT in attendance.

2.2.5  Software component integration and testing stage
During this development stage the software implementation team executes the compo-
nent integration strategy. Integrated components are then tested against structural com-
ponent specifications and peer reviews should be conducted with the implementation
IPT to review the results of integration testing. Upon acceptance by the peer review,
integrated components should be made available for further integration efforts, as
required by the component integration strategy, until the software elements are com-
pletely assembled and integrated into one or more software configuration items.

2.2.5.1  Integration readiness review (peer evaluation)
Each implementation component should undergo an integration readiness review to
(1) ensure that every implementation unit or component to be involved in the inte-
gration has satisfactorily passed the qualification review, (2) evaluate the integration
approach, and (3) evaluate the component integration test procedures. The review
should be conducted by a senior member of the software implementation team with
a representative from the SWE-IPT in attendance.

2.2.5.2  Product testing readiness review
With the product testing readiness review, the software implementation team
should present the status of the software product implementation to provide evi-
dence of its readiness to begin the product testing stage of software implementa-
tion. Representatives of the SWE-IPT should be present to ensure that the software
product integration testing has been completed and the software test procedures and
environment are in a ready-state to support product testing.

2.2.6  Product testing stage
During this development stage the finished product should be exercised using the
acceptance test procedures. The test environment used for product testing should
be consistent with the acceptance test environment to ensure that unknown defects
or failures will not arise during acceptance testing. Upon successful completion of
product testing, the product configuration item and its associated documentation
should be prepared for the functional and physical configuration audits.

2.2.6.1  Acceptance testing readiness review
The acceptance testing readiness review is a technical review with technical stake-
holders and software development management representatives to review the results

40 CHAPTER 2  Generic Software Development Framework

of software product testing and the status of software problem reports stemming
from identified deficiencies. The SWE-IPT makes a recommendation to the soft-
ware development manager concerning the readiness of the software product to
enter the acceptance testing development stage.

2.2.6.2  Testing readiness review
The testing readiness review is a project-level review with stakeholders and project
management representatives to review the results of software dry-run testing and
the status of software problem reports stemming from identified deficiencies. The
SWE-IPT makes a recommendation to the project manager concerning the readi-
ness of the software product to enter the acceptance testing stage.

2.2.7  Acceptance testing stage
During this development stage the finished product is tested according to the test
plans and procedures. In the event that the software does not satisfy a specified
requirement then the SWE-IPT must decide to have the deficiency corrected, or to
apply for a deviation or waiver for the product. A deviation represents a temporary
acceptance of the software product with a known deficiency. The deficiency is to
be rectified in an upcoming release or patch to the software product. The intent of
a deviation is to permit the distribution or deployment of a software product with
known requirement deficiencies. A waiver represents the stakeholders’ agreement
to permit the software product from not fulfilling a specified requirement, with no
demands for the product deficiency to be correct in an upcoming release or patch.

2.2.7.1  Functional configuration audit
The function configuration audit (FCA) is a configuration management examination
of the software product to verify, via testing, inspection, demonstration, or analysis
results, that the product has met the requirements specified in the functional base-
line documentation. The examination verifies that all authorized change propos-
als were incorporated into the product and documentation set prior to acceptance
testing.

2.2.7.2  Physical configuration audit
The physical configuration audit (PCA) is a configuration management examination
of the as-built (implemented) software product configuration against its technical
documentation. The PCA includes a detailed examination of the engineering draw-
ings, design documentation, and specifications to ensure that the documentation set
is ready to support the post-development processes.

2.2.7.3  Deployment qualification review
The deployment qualification review is a technical-level review of the deployment
process to ensure that the process and personnel are prepared for software product
training. The results of this review should be presented at the deployment readiness
review (DRR).

412.3  Summary

2.2.7.4  Training qualification review
The training qualification review is a technical-level review of the training process
to ensure that the process and personnel are prepared for software product deploy-
ment. The results of this review should be presented at the DRR.

2.2.7.5  Sustainment qualification review
The sustainment qualification review is a technical-level review of the sustainment
process to ensure that the process and personnel are prepared for customer and soft-
ware product support. The results of this review should be presented at the DRR.

2.2.7.6  Deployment readiness review
The deployment readiness review is a project review that evaluates the status of the
post-development processes and their documentation and readiness to release the
software product to customers, consumers, and other stakeholders. The results of
acceptance testing are reviewed to ensure that the product has satisfied its specified
requirements. The results of the software product audits are reviewed to ensure that
the product and associated documentation are ready to support post-development
processes. Upon successful completion of the DRR the software product is tran-
sitioned from software development into operations reinforced by the operational
state of the post-development processes.

2.3  Summary
The software development framework provides a structured approach to software
development and project management. Stakeholder involvement throughout the
development effort is achieved with their representation on the SWE-IPT. The IPPD
philosophy accounts for the concurrent development of the PDSS processes. These
PDSS processes must be established in a timely manner to support software product
deployment and operations. The SBS embraces the IPPD philosophy and establishes
the accountability for post-development processes within project plans, budgets, and
schedules. The software development framework involves a series of project reviews
and audits to provide the project management team and stakeholders an opportunity
to maintain awareness of the status of the development effort. Project reviews deter-
mine the readiness of the technical effort to proceed to each subsequent development
stage. Configuration audits are conducted to ensure that the implemented and tested
software product configuration complies with the functional and physical baselines.

The software development framework provides a basis for discussing the need
for the software engineering practices encouraged by this book. Because the soft-
ware product takes different representations throughout the development process,
software engineering principles, practices, and tools must be employed prudently.
Because of this realization, much care has been given to how the software engineer-
ing tasks are explicitly stated to account for the status of the software product and
the project within the development framework.

This page intentionally left blank

43Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00003-3

Software Architecture 3
CHAPTER

CHAPTER OUTLINE

3.1  Stakeholder needs relationships and dependencies... 46
3.2  Software requirements baseline relationships and dependencies............................ 48
3.3  Computing environment relationships and dependencies.. 49
3.4  Test and evaluation relationships and dependencies.. 49
3.5  Functional architecture relationships and dependencies.. 50
3.6  Physical architecture relationships and dependencies... 51
3.7  Post-development process relationships and dependencies.................................... 51
3.8  Motivation for the software architecture.. 52

This chapter examines the software architecture that is the representation of an inte-
grated software product and provides the foundation for software implementation.
Because of the complex nature of a software product, there are several perspectives
that must be comprehended to describe a software product. First, a software prod-
uct is being developed to satisfy customer and stakeholder needs and expectations.
Therefore, the software product requirements need to be agreed upon by all stake-
holders and entered into the configuration management system as a requirements
baseline. This baseline permits the tracking of change proposals against the base-
lined requirements.

The second element of the software architecture is the functional architecture
that depicts the operational process, functional decomposition, performance, and
specialty-engineering characteristics of the software product. The functional decom-
position must address the behavior of the software product including aspects, such
as data security, error and failure recovery, and safety-related actions. These behav-
iors have erroneously been referred to as nonfunctional requirements. These require-
ments should be considered specialty-engineering mandates that must be addressed
within the functional architecture. Failure detection and response/recovery functions
directly impact the software product’s dependability coefficient. Product complex-
ity, architectural integrity, and resilience directly affect the software product’s main-
tainability coefficient and the ability to enhance, fortify, and extend functionality in
future versions of the software product. However these nonfunctional requirements
are specified, they must be incorporated into the functional architecture, and their
behaviors, in a stimulus-response scenario, explicitly designed into the overarching
representation of the functional architecture.

http://dx.doi.org/10.1016/B978-0-12-407768-3.00003-3

44 CHAPTER 3  Software Architecture

The final element of the software product architecture is the physical architec-
ture that depicts the structural aspects of the software product and provides insight
into how the product will be assembled and integrated to form one or more soft-
ware configuration items. The physical architecture is derived from the functional
architecture in a manner that involves a top-down conceptualization and a bottom-
up manifestation. As the functional architecture is initially formulated the upper-
most structural components of the physical architecture may be identified. The
foundation of the physical architecture is derived from the functional units, which
are grouped and synthesized to identify structural units. This exposes a gap in the
structural configuration that is resolved with the establishment of a software inte-
gration strategy. This approach to configuring the physical architecture is explained
in detail in Chapter 12.

Without the physical architecture, the software implementation effort cannot
be properly defined, planned, and controlled. The software engineering integrated
product team (SWE-IPT) is responsible for developing and controlling the software
architecture and its integrated design and configuration documentation. The soft-
ware architecture must characterize the design of the software product to be devel-
oped. This necessitates the crafting of different types of design diagrams, views,
and documentation that depict the software architecture. The general categories of
design documentations include:

●	 Descriptions of the functional architecture and its design representations, such
as functional specifications, functional decomposition hierarchies, data flow dia-
grams, behavioral models, and data dictionaries.

●	 Descriptions of the physical architecture and its design representations, such as
interface block diagrams, structural specifications, and configuration assembly
and integration plans.

●	 Requirements baseline and its representations, such as software requirement
specifications, software interface specifications, and database requirement
specifications.

●	 Description of the computational environment.
●	 Post-development process specifications and design documentation.

There exist relationships and dependencies among all of these design descrip-
tions that must be harmonized and synchronized to enable the project to consider
potential software design opportunities, and respond to change requests and propos-
als by incorporating approved changes into the software architecture.

The elements of the software architecture, the computing environment, and the
relationships and dependencies that exist among these elements are identified in
Figure 3.1. These relationships are indicated by the arrows between any two ele-
ments of the software architecture. These relationships represent the dependen-
cies a source element has with regard to the target element. These relationships
and their dependencies are further examined in the following sections. Notice that
the stakeholder needs, software implementation, and test and evaluation elements
in the figure are grayed out to indicate that they are not elements of the software

45﻿﻿ Software Architecture

architecture. They are included in the figure because of their interest in the estab-
lishment of the software architecture and their involvement with the software devel-
opment effort.

The definition of the software architecture is the responsibility of the SWE-IPT.
This multidisciplinary team involves representatives from all of the technical organ-
izations involved in the software development effort. These representatives bring
their technical knowledge and organizational interests to collaborate on the defini-
tion of the software architecture. The SWE-IPT is responsible for the generation
and maintenance of diagrams, drawings, models, and documentation that comprise
the product data package. The product data package provides the information nec-
essary to enable the software implementation team to design, code, and test (fabri-
cate) structural units, and to assemble, integrate, and test structural components into
one or more complete software configuration items. The software data package is
enhanced by the addition of the as-built documentation, generated during software
implementation, which is necessary for software product sustainment. The soft-
ware product configuration audits are performed against the data package prior to
deployment readiness review (DRR) to ensure that the product data package accu-
rately reflects the product implementation and incorporates all authorized change
proposals.

FIGURE 3.1

Software architecture elements.

46 CHAPTER 3  Software Architecture

Because of these relationships and dependencies among the elements of the
software architecture, the practice of requirements management and traceability
must be extended to account for the broader converge necessary to support software
development and product sustainment. The software requirements involve the soft-
ware product, interfaces to external systems, the computational environment, and
several post-development processes. There exists a chain of traceability from stake-
holder needs to the software product requirements, functional and physical repre-
sentations, and post-development processes that are essential to the implementation
of the design solution. Figure 3.2 depicts this requirements traceability chain for the
software product and post-development processes. The relationships and dependen-
cies are identified and discussed in the following sections to emphasize the asso-
ciation among the architectural elements and how they coalesce into a software
product configuration.

3.1  Stakeholder needs relationships and dependencies
Stakeholders have a vested interest in the development, operation, and sustainment
of the software product. They derive some benefit or utility from the existance of

FIGURE 3.2

Chain of requirements traceability.

473.1  Stakeholder needs relationships and dependencies

the product in their professional occupation, personal affairs, or entertainment.
Stakeholder needs establish the value, potential, motivation, and consequence of
the product’s existence and sustainment. Stakeholders’ contribute their professional
discrimination toward the definition of the product’s composition, characteristics,
and application within their profession, enterprise, and industry. When the product
is finally deployed, stakeholders gain personnal benefits and satisfcation with hav-
ing been closely assoicated with the product’s development. Additionally, stake-
holders often become advocates for the use of the product within their business
ventures, industry, or social circles, and take great pride in their contribution to the
development of a successful product. The prinicpal dependencies between stake-
holder needs and software requirements are:

1.	 Product operational characteristics (requirements baseline). The stakeholders
expect to utilize the product in their vocation, personal interests, or recreational
interests. They will promote operational traits for the software product that can
be exploited for their benefit, advantage, or entertainment value.

2.	 Product performance characteristics (requirements baseline). Stakeholders are
interested in the effectiveness, responsiveness, and efficient execution of data
manipulation, computation, and presentation.

3.	 Product physical characteristics (requirements baseline). Stakeholders are
concerned with the style, sophistication, and aesthetic qualities of the software
product due to their authoritative affiliation with it. The intellectual response to
the attractive, creative, and innovative “look and feel” with graphical displays,
user interfaces, and data presentation affect the acceptance by the user commu-
nity at large.

4.	 Product qualification requirements (requirements baseline). Stakeholders must
concur with the product qualification methods by which each requirement will
be authenticated. The typical qualification methods include analysis, demon-
stration, inspection, and testing. Each method prescribes the manner by which
test results will be analyzed to determine if the product conforms to specified
requirements or exhibits the desired characteristics.

5.	 Product interface requirements (requirements baseline). Stakeholders are con-
strained by the existance of operational systems or other products that are uti-
lized to support their business operations and professional assignments. Product
interfaces provide the seamless data exchange among systems or products, and
these product interfaces cannot be arbitrarily modified to facilitate the software
product’s design and implementation.

6.	 Post-development processes (requirements baseline). The requirements for post-
development processes are contingent on the definition of the software product.
The methods employed to package and distribute the product will be determined
by industry norms and competitive approaches. The types of user training will
depend on the complexitiy of the product, the business or operational missions
it supports, and the number of external systems or products it interfaces with.
The types and amount of customer and product support made available will

48 CHAPTER 3  Software Architecture

be determined by the magnitude of the customer base and the reliance of busi-
nesses or individuals on the product to achieve their professional transactions.

3.2  �Software requirements baseline relationships and
dependencies

The software requirements baseline consists of a number of specifications that are
harmonized to articulate the expected functional, performance, physical, and qual-
ity characteristics to be exhibited by the software product, computing environment,
and associated post-development processes. This set of requirements focuses on the
activities that elaborate the software architecture and the definition of the accept-
ance test scenarios and procedures. The requirements are utilized during the func-
tional and physical configuration audits as the standard against which software
product implementation is assessed to determine its quality of workmanship. The
requirements baseline involves the following relationships and dependencies with
stakeholder needs or other elements of the software architecture:

1.	 Development costs versus timeliness (Stakeholder Needs). The software require-
ments will ultimately determine the cost of the development effort and will
impact the product delivery milestones. Determining how to balance the soft-
ware product requirements so that the development project remains stable and
can proceed decisively toward conclusion is contingent on the accuracy and
reasonableness of the requirements baseline to establish the conditions for the
project to succeed.

2.	 Software product requirement appropriateness (functional architecture). The
suitability, correctness, thoroughness, and precision of product requirements
will impact the development effort. The breadth of the requirements will affect
the product success in the marketplace. The software product requirements are
interpreted and converted into the functional architecture. Vague or ambiguous
requirements may obscure the optimal composition of the functional architec-
ture in terms of orderly arrangement, complexity, and suitability. Requirements
that are overstated will drive up development costs and threaten to increase
product complexity.

3.	 Scope of the test and evaluation effort (test and evaluation). The requirements
baseline establishes the scope of the test and evaluation effort for both the
software product and the post-development software sustainment (PDSS) pro-
cesses. Permitting the requirements to be excessive will significantly increase
the number and complexity of test cases and scenarios. The testing effort may
consume a significant amount of project resources in terms of budget, tools,
equipment, and schedule.

4.	 Scope of the post-development processes (post-development processes).
Increased product complexity impacts ease-of-use and training demands for
users, as well as product and customer support costs.

493.4  Test and evaluation relationships and dependencies

3.3  �Computing environment relationships and
dependencies

The computing environment involves the collection of computer machinary, data
storage devices, work stations, software applications, and networks that support the
processing and exchange of electronic information demanded by the software solu-
tion. The computing environment involves the following relationships and depend-
encies with elements of the software architecture:

1.	 Technology availability (requirements baseline). The performance of the soft-
ware solution is constrained by the computing environment and must be fac-
tored into software product requirements. The number of intructions that can be
excuted, data transfer rates, graphics resolution, and rendering rates are typical
computing equipment measures that affect the subsequent performance of the
software solution.

2.	 Resource utilization and conservation (software product architecture). The
availability of computer resources within the computing environment will con-
strain software product performance. Shared resource utilization models must
be developed, especially for networked multi-user applications. A strategy for
managing resources that establishes resource consumption, conservation, pres-
ervation, and recovery must be developed and incorporated into the software
archtiecture.

3.4  �Test and evaluation relationships
and dependencies

The testing effort may consume a significant amount of project resources in terms
of budget, tools, equipment, and schedule. The testing and evalution effort deter-
mines the suitability of the software product and post-development processes
relative to the requirements baseline. The test and evaluation effort involves the fol-
lowing relationships and dependencies with the software architecture:

1.	 Test coverage (software product architecture). Software test coverage provides
an important indicator of the software implementation progress. It is necessary
to track test coverage against the three elements of the software architecture to
ensure complete exposure of the software product to testing. During software
implementation, the focus is on tracking software unit and component test cov-
erage showing how much of the application you have exercised. During test
planning, it is necessary to correlate test cases and scenarios with the require-
ments that they exercise.

2.	 Test sufficiency (requirements baseline). Testing the software product entails
some deliberate scrutiny to identify a set of discriminating test cases and scenar-
ios that will exercise the software product under simple, practical, and extreme
conditions or circumstances. Boundary testing concentrates on the boundary

50 CHAPTER 3  Software Architecture

conditions of the software requirements. Boundary value analysis should be
performed to ensure that the set of test cases are sufficient to demonstrate that
software product requirements will be subjected to a sufficient set of tests.

3.	 PDSS process test effort (post-development processes). Each of the post-
development processes will require a test and evaluation effort to ensure that the
process is prepared to support the software product and its customers or users
upon release. The post-development processes are closely associated with the
software product architecture.

4.	 Regression testing (requirements baseline). During software implementation,
existing code that has already undergone testing will need to be retested after
changes have been accomplished, such as functional enhancements, patches, or
configuration changes. Formal change proposals and technical change requests
must account for the amount of regression testing that will be necessary to
address the levels of structural component integration necessitated by proposed
changes.

3.5  �Functional architecture relationships and
dependencies

The functional architecture describes what transactions the software product must
carry out to satisfy the specified requirements. To determine this, the top-level func-
tions must be decomposed to identify the sequence of subfunctions, control logic
and decision branches, and inputs and outputs necessary to enable each function.
Functions may require computing resources, such as data storage or data transmis-
sion bandwidth, to perform effectively. The functional architecture involves the fol-
lowing relationships and dependencies with the software architecture:

1.	 Functional behavior verification (requirements baseline). The functional
decomposition of the software requirements results in the definition of func-
tional behaviors that express the software response to identifiable stimulus.
These behaviors depict functional flow timing, data flow, control flow, and
resource utilization for each user interaction, software operation, and interface
transaction. The accuracy and suitability of these behavioral models must be
confirmed as a suitable interpretation of the software requirements.

2.	 Performance allocation confirmation (requirements baseline). The anticipated
range of functional performance must be shown to satisfy the degree of perfor-
mance specified by the software requirements. Functional performance budgets
should be justifiable based on the computing environment vendors’ published
equipment characteristics.

3.	 Functional specification integrity (requirements baseline). The complete func-
tional architecture must be shown to address all operational or system states and
modes of operation, user inputs, interface message profiles, and fault detection,
isolation, and recovery solutions.

513.7  Post-development process relationships and dependencies

4.	 Functional assimilation (physical architecture). Each of the functional units
must be assigned to a structural unit where it may be combined, integrated, and
blended with similar functions. The resulting structural unit requirements must
be traceable to each functional unit specification.

3.6  �Physical architecture relationships and
dependencies

The physical architecture depicts the arrangement, interfaces, assembly, and inte-
gration configuration of the software product:

1.	 Structural design verification (functional architecture). The physical architc-
ture must be verified to confirm that all of the functional requirements
have been incorporated into the structural unit and component integration
specifications.

2.	 Structural design optimization (functional architecture). The physical archi-
tecture design refinements and optimization must be shown to conform to the
funtional specificiatons. Structural design refinements may be embraced to
accommodate structural design discretion and resourcefulness and may require
adjustment of the functional specifications.

3.	 Structural performance validation (requirements baseline). The estimated per-
formance of the structural design must be determined using static mathematical
or dynamic models. These performance estimates must be shown to satisfy the
specified requirements.

4.	 Measured product performance (software implementation). The actual perfor-
mance of the software implementation must be measured and verified against
the predicted performance of the structural design.

3.7  �Post-development process relationships and
dependencies

The post-development processes involve their own specific development process
that is not the subject of this material. However, their requirements are specified as
an integral element of the software product development effort due to their close
association with the software product. Therefore, the relationships identified here
are intentionally general and broad:

1.	 Process effectiveness verification (requirements baseline). Each of the PDSS
processes, in terms of procedures and trained, qualified staff, must be verified to
ensure operational readiness and utility.

2.	 Process completeness (software architecture). The overall definition, design,
and implementation of each post-development process must be verified to be
consistent with the software architecture.

52 CHAPTER 3  Software Architecture

3.8  Motivation for the software architecture
Software development has a tarnished history of project and product failures and
has earned a reputation as an undisciplined, naïve craft. While there have been
many offenders, the numerous attempts to improve the state of practice have failed
to make any significant advancement in software development efficiency, effective-
ness, or product quality. The failure of past attempts can be attributed to the fail-
ure to devise a vigilant design paradigm that addresses the product requirements,
functional and performance characteristics, and assembly and integration structural
considerations. The software architecture, as addressed in this material, is intended
to fulfill this software design liability.

The software architecture involves a number of elements or subarchitectures to
be consistent with the integrated product and process development (IPPD) philoso-
phy. The following list identifies the various subarchitectural elements found within
the software architecture. Note that for each lowest-level subarchitecture there are
three subelements: (1) requirements baseline, (2) functional architecture, and (3)
physical architecture.

Software Architecture
l	 Product requirements baseline
l	 Product functional architecture
l	 Product physical architecture

Software Post-development Process Architecture
Product Distribution Process Architecture

l	 Distribution process requirements baseline
l	 Distribution process functional architecture
l	 Distribution process physical architecture

Product Training Process Architecture
l	 Training process requirements baseline
l	 Training process functional architecture
l	 Training process physical architecture

Product Sustainment Process Architecture
Customer Support Process Architecture

l	 Customer support process requirements baseline
l	 Customer support process functional architecture
l	 Customer support process physical architecture

Problem Resolution Process Architecture
l	 Problem resolution process requirements baseline
l	 Problem resolution process functional architecture
l	 Problem resolution process physical architecture

Product Enhancement Process Architecture
l	 Product enhancement process requirements baseline
l	 Product enhancement process functional architecture
l	 Product enhancement process physical architecture

533.8  Motivation for the software architecture

The software architecture discussed throughout this work is based on systems
engineering practices and principles. The software architecture consists of an
assortment of design artifacts typical of other engineering disciplines, such as dia-
grams, drawings, and static and dynamic models. The typical software architecture
artifacts are shown in Figure 3.3. This architecture is used to control the product
configuration and facilitate the inclusion of authorized changes within the product
design framework. It accounts for the complex, nonmaterial nature of the software
product, and its relationship to project management tools and techniques. The arti-
facts associated with the physical architecture forms the software technical data
package that is provided to the software implementation team for software imple-
mentation design, coding, integration, and testing.

Every complex product development activity involves some form of product
architecture derived from engineering principles. The following definition is pro-
vided for the term product architecture:1

Description of the way(s) in which functional elements of a product or system
are assigned to its constituent components or subsystems, and of the way(s) in
which they interact.

This definition identifies the primary intent associated with the software prod-
uct architecture—to describe the way in which functions are assigned to physi-
cal elements and how they interact. This implies that the product architecture
involves two distinct design representations, one being functional and the second
being physical. Product functions and performance objectives are derived from the
product requirements. Functional decomposition breaks down a complicated prob-
lem space into smaller, less difficult tasks that can be less challenging to resolve.
In its most basic form a functional decomposition is represented as a hierarchical
decomposition with its performance characteristics budgeted among the constitu-
ent functions. The functional architecture description includes the functional inputs
and resources needed by the function to generate outputs or provide a service. The

FIGURE 3.3

Typical software product architecture artifacts.

1 See http://www.businessdictionary.com/definition/product-architecture.html.

http://www.businessdictionary.com/definition/product-architecture.html

54 CHAPTER 3  Software Architecture

lowest-level functions, functional units, are assigned to the structural units of the
physical design establishing the relationship between the functional and physical
architecture domains. The structural component integration strategy establishes the
approach for assembling and integrating the structural units and components into
one or more software configuration items.

The software architecture discussed in this chapter involved the software prod-
uct architecture, the computing environment, and the definition of the post-devel-
opment processes. The software architecture addresses the product and additional
elements tightly associated with the product’s operations and sustainment. Each of
these elements that make up the software architecture involves a set of requirements
and a functional and physical representation. This is consistent with the software
breakdown structure (SBS) and IPPD philosophy addressed previously. The soft-
ware product architecture involves the product requirements, product functional
architecture, and product physical architecture. The elements of the software prod-
uct architecture are examined in more detail in the following chapters of this book:

●	 Product requirements—Chapters 7–9
●	 Functional architecture—Chapters 10 and 11
●	 Physical architecture—Chapters 12 and 13

55Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00004-5

Understanding the Software
Project Environment 4

CHAPTER

CHAPTER OUTLINE

4.1  Integrated product teams.. 60
4.2  Software architecture... 61
4.3  Complexity control mechanisms.. 63

4.3.1  Work breakdown structure..63
4.3.2  Product breakdown structure...64
4.3.3  Specification tree..65
4.3.4  Documentation tree...65
4.3.5  Software product baselines..65
4.3.6  Requirements traceability guidelines..67
4.3.7  Trade-off analysis..68
4.3.8  Software complexity measures...70

4.4  Software nomenclature registry.. 74
4.5  Software integration strategy.. 74
4.6  Project and technical planning... 75

4.6.1  Technical organization plans..75
4.6.2  Project plans..77

The effective and profitable execution of a software engineering project involves an
understanding of the complex interactions and dependencies inherent in the project
environment. This knowledge must be fortified with a set of supervisory tools that
provide information concerning the current status of tasks and work products. This
information contains obscure symptoms of potential situations that threaten the pro-
ject’s success or software product’s quality and competitiveness in the marketplace.
Software engineering exploits this information to permit its attentive practitioners
to recognize disruptive trends and react in a positive manner to neutralize the root
causes of problematic conditions.

There are three fundamental management tools that are used to guide a project
toward successful completion. The first is the integrated master plan (IMP), which
identifies the organizational roles and responsibilities, tasks to be performed, and
expected outcomes. The second is the integrated master schedule (IMS), which
provides a timeline of key events, milestones, reviews, and decision points. And
finally, there is the project budget, which identifies the resources that are allocated to
each organization to enable the execution of planned tasks. However, these project

http://dx.doi.org/10.1016/B978-0-12-407768-3.00004-5

56 CHAPTER 4  Understanding the Software Project Environment

management instruments must be properly developed, monitored, and adjusted to
reflect the ambiguity inherent in task estimation. Initial planning forecasts of antici-
pated productivity, performance, and results must account for project uncertainty.
The level of confidence toward achieving project objectives involves understanding
the assumptions that were involved in generating project plans and the probable out-
comes if the assumptions prove flawed or inaccurate. The software engineering team
can control the project’s destiny by understanding the impact assumptions and deci-
sions may have on project plans and anticipating the recovery strategy when pro-
gress is slowed or impeded by unforeseen circumstances.

Project plans, schedules, and budgets are simply restraining devices that are
used to corral the project team toward product delivery in a timely and cost-effec-
tive manner. Initial plans are never accurate since there are too many unknowns
concerning the software product to be developed. Additionally, it may not be pos-
sible to predict future or unexpected events. The number of stakeholders involved
with the software development project makes it almost impossible to establish an
accurate project plan. Therefore, the most important motive for employing software
engineering practices is to fill in the gaps of understanding concerning the software
product. This, in turn, helps refine the technical and project plans, schedules, and
budgets so that the project can be successfully executed.

Software development projects are established with the aim of delivering a
“new” software product to one or more customers. Therefore, until the software
product definition is relatively complete, the project plans will always be impre-
cise. This implies that the project plans, schedules, and budgets are simply tools that
direct the project team toward the definition, design, implementation, testing, docu-
menting, and delivery of a software product. The dilemma faced by the project team
is determining how to define the software product in such a manner that the project
goals and objectives can be satisfied. Inherent in this situation is the fact that project
plans, schedules, and budgets are simply a means to an end to the successful delivery
of a software product on time (according to schedule) and without exceeding author-
ized funding thresholds (according to budget). As long as the project team can define
and deliver an acceptable software product by the delivery date and does not expend
more resources than authorized, the project should be deemed successful.

Within the project environment there exists a variety of decision points that rep-
resent opportunities to maintain the project scope so that goals and objectives can
be attained. Software engineering practices and tools are structured to recognize
when the definition of the software product presents an opportunity to revisit the
project plan. At each opportunity, a decision must be made on which way to pro-
ceed among alternative approaches. Making proper architectural design decisions
involves the following factors:

1.	 Understanding the product functions and characteristics that are important to
stakeholders (requirements analysis).

2.	 Determining how each product characteristic will be provided (functional
analysis and design synthesis).

57Understanding the Software Project Environment

3.	 Identifying which design approach best serves the current product stakehold-
ers and the envisioned stakeholder community or customer base (trade-off
analysis).

4.	 Eliminating unknown conditions that improve the likelihood of achieving pro-
ject and product objectives (risk assessment).

5.	 Ensuring that every function or characteristic is necessary to the operation of the
product and not in excess of what is needed (verification and validation).

6.	 Controlling product complexity to simplify software operational and support
costs (integrated product and process development, IPPD).

7.	 Refining technical and project plans, schedules, and budgets to reflect the
selected course of action (control).

Fundamentally, the software product architecture determines the project effort nec-
essary to successfully implement, test, deliver, and support the product throughout its
life cycle. If the project definition is allowed to drive the software product definition,
then the product may be less beneficial and noteworthy in a competitive environment.
The project scope must be aligned to provide the resources (personnel, facilities,
equipment, tools, budget, schedule, etc.) necessary to define, design, implement, test,
and deliver the software product to its customers. The software product must be devel-
oped to accommodate the needs and expectations of all stakeholders, including users,
support staff, training staff, investors, and enterprise management. When the product
definition and project scope are unbalanced, then the software engineering, technical,
and project management teams must collaborate to stabilize the situation.

The software engineering effort represents the total technical effort within
the project scope. As such, the software engineering leadership is responsible for
defining the software product architecture in a manner that is consistent with the
project scope. When it is perceived that the product value to its customers (consum-
ers, operators, investors, etc.) can be enhanced with the application of additional
project resources, then change proposals are generated to establish the merit of the
enhancement. This occurs whenever the enhancement cannot be accommodated
within the established project cost and schedule objectives. Figure 4.1 depicts the
role of software engineering within a project environment.

The complexity of a software development effort can be appreciated by examin-
ing the multitude of products that must be addressed throughout the development
project. Figure 4.2 provides a list of significant work products that must be gener-
ated, coordinated, and controlled by six organizations within the software develop-
ment project. Table 4.1 identifies the work load assigned to each of the software
development project organizations. The software engineering organization is directly
responsible for one-quarter of the total work plan. However, software engineering
is the lead for the total technical effort involving the work products of the other
technical organizations—everything except the project management products. This
accounts for 77.5% of the work effort. In addition, as the lead technical representa-
tive, the software engineering organization provides representatives to contribute to
the generation, coordination, and control of the project management work products.

58 CHAPTER 4  Understanding the Software Project Environment

Software development projects with little or no software engineering practices
have very little chance of success. Conducting software development without an
effective software engineering approach is analogous to building a house without
the architectural and engineering drawings. It would not be wise to permit the con-
struction of a house to begin without the architectural drawings being finalized.
Then why would it be acceptable to begin coding without the software product’s
architecture being available? Software engineering practices provide the following
advantages to the software development project:

●	 Maintain the balance between the total technical effort and project objectives.
●	 Establish the software product architecture.
●	 Control the complexity of the software product.
●	 Coordinate change proposals and requests with all stakeholders.
●	 Coordinate organizational work plans to maintain alignment of technical plans

with project objectives.

The remainder of this chapter identifies and discusses the software engineer-
ing practices and tools that contribute to achieving software product and project
alignment.

FIGURE 4.1

Role of software engineering within a project environment.

FIGURE 4.2

Software development work products.

60 CHAPTER 4  Understanding the Software Project Environment

4.1  Integrated product teams
Integrated product teams (IPTs) are the organizational construct used to manage the
complexity of the software development effort and ensure proper stakeholder par-
ticipation in the decision-making process. IPTs are the basis of organizing develop-
ment personnel and stakeholder representatives to enable IPPD. Implementation of
IPTs represents a transition from a functional stovepipe organizational arrangement
to a product and process focus. Teamwork drives the functional disciplines into a
mutually supportive relationship that helps remove barriers to software development
success. The teams can be formed at all levels of the organization and are empow-
ered to make critical life-cycle decisions for the development of a software product
or sustainment process. Figure 4.3 identifies several recommended software IPTs.
Additional IPTs should be formed to oversee the development of individual product
elements or sustainment processes, depending on the critical nature of the article.

The software engineering IPT is chaired by the chief software engineer and
involves representatives from the technical organizations and stakeholder groups.
The team is responsible for establishing and controlling the software product and
process architectures in a manner that ensures the symmetry and harmony of the
interests of all representatives. Issues that cannot be resolved by this team should
be raised to the project control IPT for deliberation. It acts as the technical change
control board (CCB) for change requests that can be accommodated within the
current scope of the development project. Change requests that cannot be accom-
plished within available technical resource levels should be elevated to the project
control IPT for consideration.

The project control IPT is responsible for monitoring project progress toward
the achievement of project objectives, as well as stakeholder satisfaction with the
software product. The team acts as a filter for change proposals that require the
application of additional resources to execute. Change proposals that cannot be
accommodated within available project resource levels should be elevated to the
project CCB.

Table 4.1  Software Development Project Organizational Work Load

Organization No. of Work Products % of Work Plan

Project management 20 22%
Software engineering 21 23%
Software implementation 10 11%
Software test and evaluation   9 10%

Computing environment definition   9 10%

Post-development software sustainment 22 24%

Total 91

614.2  Software architecture

4.2  Software architecture
The software architecture identifies the operational and business needs and char-
acteristics associated with the software product. Software engineering establishes
a software architecture to address the functional and physical configuration of the
software product and influences the post-development processes. Thus, the soft-
ware architecture involves the software product architecture and the architectures
for each of the post-development processes. Figure 4.4 shows the software archi-
tecture and its relationships to the software product and post-development process
architectures.

Each architecture involves three distinct but integrated perspectives: require-
ments baseline, functional architecture, and physical architecture. The requirements
baseline represents the set of requirement specifications that address the software
product or post-development process area. The functional architecture represents
the functional and performance decomposition of the requirements into functional
components and units. One or more behavioral models can be developed to depict
the functional flows, data flows, timing, and execution logic in terms of loops and
business rules (e.g., If … Then … Else …, Select … Case constructs).
Each functional element is characterized by a specification that provides the details
concerning its performance, behaviors, and handling of error conditions. The phys-
ical architecture represents the structural design of the software product or post-
development process area. It is derived from the lowest-level functional units and
addresses the component integration strategy that guides the assembly, integration,
and testing of the software product or post-development process area.

FIGURE 4.3

Recommended software development IPTs.

62 CHAPTER 4  Understanding the Software Project Environment

1.	 Software product operational architecture. The product operational architecture
profiles the business and market essentials concerning the new software prod-
uct that is being considered for development. It should provide the information
concerning the operational computing environment, the business process it
supports, the customer base by industry, and the number of potential corporate
entities and end users that would utilize the product. The types of end users and
associated skill levels should be categorized to provide a basis for establishing
the software product training and help systems. The issues of product licensing,
warranties, and return policies must be addressed.

2.	 Post-development operational architecture. The post-development operational
architecture should establish the anticipated approach to providing software
product distribution, installation, training, and support capabilities. The use of
existing facilities, subcontractors, and software dealerships versus enterprise
direct sales, training, and support staffs should be considered.

3.	 Software product architecture. The software product architecture identifies prod-
uct requirements and functional and physical characteristics to be implemented
and tested. Chapter 3 provides a detailed description of the software product
architecture.

FIGURE 4.4

Elements of the software architecture.

634.3  Complexity control mechanisms

4.	 Post-development process architectures. Each of the post-development pro-
cesses should be defined to address how the software product will be distributed
and sustained, and end-user training provided.
●	 Training process architecture. The training process architecture should iden-

tify the training program in terms of training courses, materials, facilities,
and automated aids that must be provided to assist the end user gaining an
understanding and proficiency in the software product operation. The use
of third-party training organizations, training of customer training staff, or
enterprise training capabilities should be considered.

●	 Distribution process architecture. The distribution process architecture
should identify the various approaches by which the software product will
be shipped, installed, and transitioned into operational status. Software
media content (executable files, installation, and users’ manuals) should be
identified and the means of distributing the media should be addressed. The
use of boxed media versus electronic media delivery should be evaluated to
determine the best avenue for transmitting the software product and manuals
to customers.

●	 Sustainment process architecture. The sustainment process architecture
should identify the types of product and customer support that must be pro-
vided. The problem resolution process and procedures should be defined,
and the facilities, tools, and staffing requirements for product sustainment
should be specified. The approach to developing and distributing problem
remedial patches and preplanned product enhancements should be described
and characterized.

4.3  Complexity control mechanisms
A major focus of the software engineering effort is the relationship between prod-
uct and project complexity. A number of software engineering practices are utilized
to manage this relationship and monitor progress toward achieving project objec-
tives. Each of these complexity control mechanisms will be discussed as they apply
to the software product. However, they are just as applicable to the definition of the
computing environment and the post-development processes.

4.3.1  Work breakdown structure
The work breakdown structure (WBS) decomposes work activities into manage-
able tasks that are expressed as work packages. Each work package identifies the
sequence of tasks that must be accomplished to complete an intermediate work
product or outcome. Work packages identify the inputs from other sources, labor,
meetings, travel expenses, and material resources needed to complete the task.
Work scheduling identifies the anticipated start dates, conditions necessary to
begin a task, the time interval when the task will be performed, and the anticipated

64 CHAPTER 4  Understanding the Software Project Environment

completion date and deadline that identifies when a delay in task completion begins
to affect other tasks.

The most common technique for defining a WBS is to use the product break-
down structure to identify the effort necessary to define, design, implement, and
test the various parts of the product, and perform assembly, integration, and test-
ing of components. This permits each of the project organizations to identify the
work associated with each element of the software product, identify the staff work
assignments, and ensure that staff skills and expertise are properly applied across
all work products. Each work package should be assigned a work authorization or
cost accounting control number used to track cost accrual over time.

The work package definition establishes the dependencies among task execu-
tion that provide the information necessary to construct a work plan, schedule, and
budget. The work plan should identify the activities and tasks that must be accom-
plished to generate work products, the organizational roles and contribution to each
task, and the level of effort and resources necessary to perform the identified work.
Risks to task execution should be identified and incorporated into the work plan and
schedule to identify potential problematic situations that must be monitored, and
the anticipated response to adverse occurrences.

The WBS has long been a project management tool used to define, organize,
and track progress toward achieving project objectives. It captures the work to be
performed necessary to deliver the software product and establish the post-devel-
opment processes. It illustrates the numerous interactions among the software
development organizations required to coordinate and collaborate on development
activities. However, a new software development product cannot be defined in
terms of its product breakdown structure during the early stages of development.
Therefore, the work packages and cost allocations must be continually revisited and
elaborated to reflect the software architecture as it evolves.

The WBS provides an excellent gage of the project and product complexity rela-
tionships. The number of dependencies among tasks provides a basis for establish-
ing a critical path for achieving project objectives. The slack time (time between
planned completion and deadline) indicates how compressed the work plan has
been constructed. The smaller the slack time between elements on the critical path
indicates the relative stress and significance the tasks on the critical path are to be
accomplished according to the plan. Slack time should be built into the schedule’s
critical path to account for unforeseen events that may cause tasks to be delayed.

4.3.2  Product breakdown structure
The product breakdown structure (PBS) represents the decomposition of the soft-
ware product into software configuration items, multiple levels of structural com-
ponents, and structural units. The PBS is essential since it provides the basis for
software component integration and testing, as well as the refinement of work pack-
ages and budget allocations. However, the initial PBS can only address the top level
of known configuration items and software components. The initial PBS becomes
increasingly accurate as a result of developing the software product architecture.

654.3  Complexity control mechanisms

The complete definition of the PBS is extracted from the software product
physical architecture and reflects the work effort to design, code, and test software
units and the integration of these units into software components and configuration
items. Therefore, the initial PBS that supports early project and technical planning
is based on abstract software components that represent large wedges of anticipated
work. These initial planning approximations are known as ballpark estimates and
provide a placeholder within the work plan that must be enhanced in precision as
more knowledge of the software product architecture is made available. Figure 4.5
depicts a conceptual evolution of the PBS as the software product physical architec-
ture is refined and characterized. This occurs when software requirements are ana-
lyzed, design alternatives are investigated, and a design approach is chosen. The
figure only shows a partial decomposition for one configuration item. The definition
of the PBS is expanded throughout the early software definition activity, but should
be finalized by critical design review (CDR). By this milestone, the software prod-
uct physical architecture should be complete with a full set of identified structural
units and software integration strategy.

4.3.3  Specification tree
The specification tree is a schematic diagram that identifies the requirement speci-
fications and their relationships for the software product and post-development
processes under development. Each element of a product or process breakdown
structure should have a specification that stipulates the performance or essential
characteristics that a stakeholder requires and that must be delivered. Specifications
are written usually in a manner that enables the developer and stakeholders to
measure the suitability of the software product’s intended operational or business
purpose. Specifications represent an output, product, or result of a work package
identified by the WBS. The specification tree supports cost estimation, budgeting,
and configuration control activities within a development project.

4.3.4  Documentation tree
The documentation tree is a schematic diagram that identifies the design drawings,
diagrams, documents, and technical manuals associated with a software product or
post-development processes under development. Each element of a product or pro-
cess breakdown structure should have one or more documentation items that record
its design characteristics. Documentation represents an output, product, or result
of a work package identified by the WBS. The documentation tree supports cost
estimation, budgeting, and configuration control activities within a development
project.

4.3.5  Software product baselines
The requirements baseline identifies the required software functional, performance,
and interface characteristics that must be present for the product development to be

FIGURE 4.5

Evolution of the PBS.

674.3  Complexity control mechanisms

completed. It addresses the verification fundamental to demonstrating the achieve-
ment of those specified requirements. The requirements baseline is comprised of
the software and computing environment requirement and interface specifications
that will be used by the software test staff to confirm the product’s completeness
during acceptance testing. The traditional software requirements baseline has
been referred to as the functional baseline by the configuration management dis-
cipline. However, this baseline only addresses the software product functionality
and ignores the functionality provided by the elements of the computing environ-
ment. Because a software product cannot be executed without the properly config-
ured computing environment, the term requirements baseline has been introduced.
In essence, the requirements baseline is comprised of the functional baselines of
the software configuration items (if there are multiple software configuration items)
and the computing environment.

The allocated baseline defines the configuration items making up a software
product and identifies how software functional and performance requirements are
allocated across lower-level configuration items.1 It includes all functional, perfor-
mance, and interface characteristics that are allocated from top-level software con-
figuration items to functional components and units that comprise the functional
architecture.

The product baseline describes all of the necessary functional and physical
characteristics of a software configuration item and the tests necessary to demon-
strate the compliance of the configuration items with its specified requirements. The
product baseline includes “code-to” specifications for software structural units and
components that comprise the physical architecture.

4.3.6  Requirements traceability guidelines
It is vital to have a complete understanding of the relationships among the software
product and post-development processes and the project management and control
mechanisms. It is not sufficient to have software requirements traceability among
requirements specifications and test artifacts. To be responsive to design decisions,
configuration alterations, requirements change proposals, and evolving stakeholder
needs, many of the software development documentation artifacts (specifications,
diagrams, plans, schedules, budgets, work packages, etc.) must be associated and
tracked via one or more traceability tools. Figure 4.6 identifies the types of soft-
ware design, documentation, planning, and project control artifacts that should be
included in requirements traceability guidelines.

1 The term configuration item is typically used to identify an integrated, deliverable software product.
A software product may be one or more software configuration items. Every element of the software
architecture (functional and structural components and units) represents configuration elements that
are addressed by the allocated and product baseline.

68 CHAPTER 4  Understanding the Software Project Environment

There is a minimum set of traceability relationships that must be managed to
support software verification and validation evaluations and configuration audits.
These are shown as a solid line in Figure 4.6.

4.3.7  Trade-off analysis
Trade-off analysis is an exploratory tool by which stakeholder needs, software
requirements, or architectural design alternatives are assessed to determine a pre-
ferred course of action. A software trade-off analysis should be conducted when-
ever there are competing solutions under consideration rather than making
assumptions or design decisions with less-than-ideal information. It is important to
understand how each decision affects the software product architecture in terms of
complexity, effort required to implement the solution, and impact on post-develop-
ment processes and life-cycle costs. Each potential alternative must be evaluated
from several perspectives, including performance, innovativeness, cost to imple-
ment, usability, customer appreciation, competitive posture, and post-development
sustainment ramifications. In addition, alternatives should be assessed to understand

FIGURE 4.6

Recommended requirements traceability coverage.

694.3  Complexity control mechanisms

the potential risks to achieving project objectives if the alternative were chosen.
Understanding the risks with each alternative enables many risks to be avoided.

There are eight fundamental trade-offs that must be considered before making
any decision to sanction a software requirement or design approach (Figure 4.7).
The trade-offs occur among the primary competing factors that affect software
development and product success. These trade-offs properly consider development
project expense as an investment in the product being developed. Time-to-market
addresses the importance of distributing the product sooner to capture market share
and establish a customer base. Product performance recognizes that each increment
of functionality or performance aggravates the work effort, which increases product
cost and development expense.

It is important to understand the relationship among these product development
and project characteristics. Development program expense represents the cost to
develop the software product, while development speed addresses the schedule con-
sideration with product introduction to a market or delivery to a customer. Product
cost intimates the customer or consumer value for the software product given prod-
uct performance, characteristics, and competitive factors. Product performance
addresses the functional and performance characteristics provided by the software

FIGURE 4.7

Fundamental trade-offs during software development.

70 CHAPTER 4  Understanding the Software Project Environment

product. Including additional functionality or significant performance advantages
should permit the suggested price of the product to be increased due to the potential
loss of revenue caused by delaying the entry of the product into the marketplace. In
addition, those product features would incur additional development costs that must
be recouped by product sales.

A trade-off situation involves a decision to be made with full comprehension of
both the upside and downside of a particular choice. It implies forfeiting one fea-
ture or characteristic of a product or situation in return for gaining another feature
or characteristic. Sensitivity and risk analysis are two notable techniques that sup-
port the trade-off analysis decisions. They evaluate possible alternatives in terms of
the uncertainty in the analysis results and how these variations can be attributed to
different assumptions.

4.3.8  Software complexity measures
The software engineering team must identify the measures by which the complex-
ity of the software product will be appraised. At a minimum, these measures of
software product complexity should be established that can be used to aid design
decision making. The first measure should address a measure of the operational or
business process complexity2 the software product is intended to automate. The
other measures should address complexity associated with the interdependencies
among elements within the software product architecture.

The process complexity can be obtained by constructing a static or dynamic
model of the software product operations within the operational or business envi-
ronment. The software product complexity necessitates three interrelated measures
that address the evolution of the product architecture:

1.	 The number of stakeholder requirements and the perceived computational intri-
cacy that can be applied against the software requirements specifications.

2.	 The functional collaboration dependency that addresses the number of user,
database, external, and internal interactions or data exchanges identified within
the functional architecture.

3.	 The structural density of the product architecture that addresses the number of
component integration actions needed to assemble the software product.

These three measures provide a gage for each element of the software product
architecture. Tables 4.2, 4.3, and 4.4 provide a description for the computational
intricacy, functional collaboration dependency, and structural density software com-
plexity measures.

2 G. M. Muketha, A.A.A. Ghani, M. H. Selamat, and R. Atan (2008). A Survey of Business Process
Complexity Metrics, available at http://scialert.net/fulltext/?doi=itj.2010.1336.1344&org=11.

http://scialert.net/fulltext/?doi%26equals;itj.2010.1336.1344%26amp;org%26equals;11

Table 4.2  Computational Intricacy Complexity Measure Descriptions

Name Description

Measure Computational
intricacy

The overall challenge imposed by the software product requirements concerning the technical
implementation in terms of algorithmic efficiency, performance, resource utilization, and other
estblished measures of performance.

Parameters Unprecedented (U) The number of requirements that characterize a data processing challenge for which no prior
solution is known.

Complicated (C) The number of requirements that characterize a data processing challenge for which the solution
is understood, but the implementation of which may not be satisfactorily realized.

Demanding (D) The number of requirements that characterize a data processing challenge for which the solution
may be inadequately supported by computer and software technology.

Moderate (M) The number of requirements that characterize a data processing challenge for which a solution
is known and the implementation is relatively undemanding.

Example

Method of calculation Each requirement is categorized based on the perceived level of difficulty to be satisfied effectively
and efficiently given the availability of software technology, programming language constraints,
and the level of experience and skills inherent with the software implementation team. Each
requirement is evaluated by subject matter experts to assign an intricacy rating (10 for extensive;
7 for excessive; 4 for significant and 1 for moderate) and the overall collaboration complexity
rating is computed by summing the rating for each category. The intricacy rating is then divided
by the total number of requirements to derive the computational intricacy measure of complexity.

Formula ((() () ())10 7 4U) C D M /
Total no. of requirements

For this example problem, assume that the software requirement involves the following
parametrics involving architectural and implementation challenges:

U = 1 requirement implies an unprecedented challenge to deriving an acceptable solution.
C = 4 requirements imply a complicated challenge to deriving an acceptable solution.
D = 7 requirements imply a demanding challenge to deriving an acceptable solution.
M = 38 requirements imply a moderate challenge to deriving an acceptable solution.

This example of computational intricacy identifies a moderately complex software solution

Complexity levels Extremely complex: >5

Very complex: between 4 and 4.999

Highly complex: between 3 and 3.999

Moderately complex: between 2 and 2.999

Routine complexity: between 1 and 1.999

() () () ()10 1 7 4 4 7 38 104
1 4 7

=
Total no. of requirements 38 50 104 50 2 08= / .

Table 4.3  Functional Collaboration Dependency Complexity Measure Descriptions

Name Description

Measure Functional collaboration The overall challenge imposed by the arrangement of functional elements in term of
dependencies and interfaces.

Parameters Extensive (EX) The number of functional dependencies or interfaces among a functional element (functional
component or unit) exceeds 6.

Excessive (E) The number of functional dependencies or interfaces among a functional element (functional
component or unit) is for 4 or more.

Significant (S) The number of functional dependencies or interfaces among a functional element (functional
component or unit) is 2 or more.

Moderate (M) The number of functional dependencies or interfaces among a functional element (functional
component or unit) is less than 2.

Example

Method of calculation Each functional element evaluated by subject matter experts and categorized based on the
number of functional elements that impose a dependency or interface requirement on the
function. The number in each category is multiplied by its complexity rating (10 for extensive;
7 for excessive; 4 for significant; 1 for moderate) and the overall collaboration complexity
rating is computed by summing the rating for each category. The collaboration complexity
rating is then divided by the total number of functional elements to arrive at a functional
collaboration measure of complexity.

Formula (())10 7 4(EX) (E) (S) M
Total no. of functional elements

/ For this example problem, assume that the software structural configuration involves the
following parametrics involving structural component integration:

EX = 1 functional element involves more than 6 functional dependencies or interfaces.
  E = 4 functional elements which involve more than 4 functional dependencies or interfaces.
  S = 7 functional elements which involve 2 or more functional dependencies or interfaces.
 M = 38 functional elements which involve less than 2 functional dependencies or interfaces.

This example of functional collaboration identifies a moderately complex functional solution.

Complexity levels Extremely complex: > 5
Very complex: between 4 and 4.999
Highly complex: between 3 and 3.999
Moderately complex: between 2 and 2.999
Routine complexity: between 1 and 1.999

() () () ()10 1 7 4 7 38 1044
Total no. of functional elementss 1 4 7 38 50 104 50 2 08/ .

Table 4.4  Structural Density Complexity Measure Descriptions

Name Description

Measure Structural density The overall challenge imposed by the structural arrangement of a software configuration
item in terms of the software integration effort.

Parameters Extensive (EX) The number of structural components that involve the integration of 10 or more structural
elements.

Excessive (E) The number of structural components that involve the integration of 7, 8, or 9 structural
elements.

Significant (S) The number of structural components that involve the integration of 4, 5, or 6 structural
elements

Moderate (M) The number of structural components that involve the integration of 3 or fewer structural
elements.

Example

Method of calculation Each structural component evaluated by subject matter experts and categorized based
on the number of structural elements (subcomponents or units) that are involved in its
integration. The number in each category is multiplied by its complexity rating (10 for
extensive; 7 for excessive; 4 for significant; 1 for moderate) and the integration complexity
rating is computed by summing the rating for each category. The integration complexity
rating is then divided by the total number of structural components to arrive at a structural
density measure of complexity.

Formula (() ()) /10 7 4(EX) (E) S M
Total no. of structural componen

× +
tts

For this example problem, assume that the software structural configuration involves the
following parametrics involving structural component integration:

EX = �1 structural component which involves the integration of 10 or more structural
elements.

  E = �4 structural components which involve the integration of 7, 8 or 9 structural elements.
  S = �7 structural components which involve the integration of 4, 5 or 6 structural elements.
 M = �38 structural components which involve the integration of 3 or fewer structural

elements.

This example of structural density identifies a moderately complex software configuration.

Complexity levels Extremely complex: > 5
Very complex: between 4 and 4.999
Highly complex: between 3 and 3.999
Moderately complex: between 2 and 2.999
Routine complexity: between 1 and 1.999

() () () ()10 1 7 4 7 38 1044
Total no. of structural componennts 1 4 7 38 50 104 50 2 08/ .

74 CHAPTER 4  Understanding the Software Project Environment

4.4  Software nomenclature registry
The registry identifies the architectural elements of the software product archi-
tecture, and provides meaningful information about each element and their rela-
tionships to other elements within the architecture. The registry provides the
configuration identification information pertaining to each entry in the registry. A
glossary should identify the unique names for functional and structural components
and units to ensure that there are no duplicate names used within the definition of
the product architecture. The glossary of names should be arranged alphabetically
and associated with the architectural element to which it pertains using the prod-
uct unique identifier. Figure 4.8 depicts a suggested structure for the nomenclature
registry.

4.5  Software integration strategy
The software integration strategy is developed while preparing the software prod-
uct physical architecture. It identifies how structural units will be combined into a
set of structural components. Structural units are derived from the functional archi-
tecture by grouping common functional units and assimilating the unit specifica-
tions to eliminate conflicts, duplication, and inconsistencies. Structural components
are then synthesized by grouping structural units and assimilating their specifica-
tions to establish structural component specifications. Structural component speci-
fications should not reiterate structural unit requirements, but should address those
unique behavioral characteristics and interfaces that result from the integration.
This understanding of an integrated software component’s behavioral character-
istics results from the synthesis of lower-level structural elements into an inte-
grated structural component. This integration strategy may involve the integration

Software Product
1. Configuration Item X 1.2 Physical Configuration

1.2.1 Structural ComponentX.1

1.2.1.2 Structural ComponentX.1.2
1.2.1.2.1 Structural UnitX.1.2.1
1.2.1.2.2 Structural UnitX.1.2.2
1.2.1.2.3 Structural UnitX.1.2.3

1.2.3 Structural Interfaces
1.2.4 External Interfaces

2. Configuration Item Y

3. Glossary of Names

1.2.1.1 Structural ComponentX.1.1
1.2.1.1.1 Structural UnitX.1.1.1
1.2.1.1.2 Structural UnitX.1.1.2

1.1 Functional Configuration

1.1.2 FunctionX.2

1.1.3 Functional Interfaces

1.1.2.1 SubfunctionX.2.1
1.1.2.2 SubfunctionX.2.2

1.1.1 Functional ComponentX.1
1.1.1.1 Functional ComponentX.1.1
1.1.1.2 Functional ComponentX.1.2
1.1.1.3 Functional ComponentX.1.3

1.1.1.3.1 Functional UnitX.1.3.1
1.1.1.3.2 Functional UnitX.1.3.2

FIGURE 4.8

Suggested structure for the nomenclature registry.

754.6  Project and technical planning

of nondevelopmental items, such as commercially available or reusable software
components.

The software integration strategy forms the basis for the software implementation
team’s work plan to perform component integration and testing. Therefore, the iden-
tification of structural components must result in an assembly structure for the soft-
ware configuration items and product. Each software component must be comprised
of sufficient functionality and test stubs to be independently tested and evaluated.

4.6  Project and technical planning
The execution of the software development project is guided by a set of project and
technical plans. However, it is the planning exercise and decisions that are central
to the success of the project. The plans themselves only document the approach
or course of action designed to achieve immediate or short-term objectives. Initial
plans established for the software development project will need to be revised as
the software requirements and architecture are ascertained and characterized. It is
not possible to establish a comprehensive plan addressing the entire software devel-
opment effort during the early stages of development. Therefore, it is necessary for
project and technical plans to be revised prior to each review or milestone to reflect
the understanding obtained during the preceding phase of development. Figure 4.9
shows the evolution of the software architecture throughout the first three develop-
ment phases and how this leads to improving project and technical plans.

At the start of the software development effort project plans should simply
establish the major milestones to be achieved and the technical activities, documen-
tation, and models that will be generated to define the software requirement. Prior
to the software requirements review, project and technical plans should be extended
to address the technical activities that will be conducted to delineate the product
functional and physical architectures. These technical plans are summarized in
the IMP and arranged as a time-based IMS. The IMS is a networked, multilayered
schedule showing the significant tasks required to establish the software product
architecture. These project and technical plans should be the fundamental elements
reviewed at the software requirements review (SRR). Successful completion of the
SRR would authorize the work articulated by these planning devices. Throughout
the software development effort, these plans should be revised to align the technical
work with the effort remaining to complete the project objectives.

4.6.1  Technical organization plans
The software engineering plan is the central technical management document that
guides the software development effort. It focuses on the integrated technical work
necessary to define and control the software architecture. It should identify the
organizational roles and responsibilities, integrated product team purpose and com-
position, and phase-specific results and success criteria.

FIGURE 4.9

Technical and project planning.

774.6  Project and technical planning

Each technical organization should prepare its individual work plan, which
identifies how work assignments will be accomplished. The lead technician respon-
sible for each task and the interaction with other technical organizations that con-
tribute to task execution must be identified. The software implementation plan
identifies how structural units will be designed, coded, and tested, and the com-
ponent integration strategy will be executed. The software test plan addresses
how product acceptance testing will be conducted, including the dry-run testing to
ensure that the software product is ready for formal acceptance testing. Software
product deficiencies uncovered during dry-run testing should be resolved and
retested prior to conducting the testing readiness review. The post-development pro-
cess development plans should address the approach to designing, implementing,
and testing each of the post-development sustainment processes based on the soft-
ware product architecture.

4.6.2  Project plans
The IMP and IMS represent the project plans that address the technical work to be
performed. The IMP provides an integrated, hierarchical view of important tech-
nical efforts (activities, high-level tasks, reviews, and milestones). The IMP is not
a date-driven plan but is characterized by technical results that must be achieved.
Each effort must be defined by explicit results and the associated criteria that will
be utilized to confirm attainment of the desired results. The IMS is derived from the
IMP and provides additional levels of detail for tasks that are necessary to accom-
plish technical results. The IMS aligns anticipated start dates, durations, and rela-
tionships of tasks to other tasks to provide a network of integrated tasks. The IMS
provides a calendar-based view of the task details necessary for the execution, mon-
itoring, and control of project progress. The IMS must be directly traceable to the
IMP and must be linked to the WBS.

This page intentionally left blank

79Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00005-7

Software Integrated Product
and Process Development 5

CHAPTER

CHAPTER OUTLINE

5.1  Application of IPPD to software... 82
5.1.1	 Customer focus...84
5.1.2	 Concurrent development of products and processes............................84
5.1.3	 Early and continuous life-cycle planning...86
5.1.4	 �Maximize flexibility for optimization and use of contractor unique

approaches�� 87
5.1.5	 Encourage robust design and improved process capability...................88
5.1.6	 Event-driven scheduling..88
5.1.7	 Multidisciplinary teamwork..88
5.1.8	 Empowerment..88
5.1.9	 Seamless management tools..89
5.1.10  Proactive identification and management of risk................................89

5.2  Software engineering and development... 89

Integrated product and process development (IPPD) is a central theme of software
engineering that affects the software product architecture and sustainment processes.
The object of IPPD is to control the product definition in a manner that reduces
complexity and life-cycle support costs. IPPD addresses two prevalent concerns
within the system development community: first, concurrent engineering, which is
to ensure that the entire product’’s life cycle is taken into consideration during the
design process; and second, that all product disciplines, including all implementa-
tion, assembly, test and evaluation, maintenance, and support, should be involved in
the early design phases. This chapter will discuss how IPPD should be adapted for
software engineering efforts. Successful implementation of IPPD can result in:

●	 Reduced time-to-market.
●	 Reduced product development costs.
●	 Reduced development risk.
●	 Improved product quality.
●	 Reduced sustainment costs.

Traditional IPPD addressed the tight relationships between product design engi-
neering and production capabilities. Products that involve hardware elements must

http://dx.doi.org/10.1016/B978-0-12-407768-3.00005-7

80 CHAPTER 5  Software Integrated Product and Process Development

address the manufacturing and assembly line capabilities to produce quantities of
units with consistent dimensions, properties, or characteristics. Engineering toler-
ances must be specified to allow reasonable leeway for imperfections and inher-
ent variability in production quality without significantly affecting functioning of
assembled components. Therefore, the engineering design specifications for hard-
ware parts must incorporate production process capabilities. Furthermore, the man-
ufacturing process must incorporate adequate process control devices to ensure a
significant yield of acceptable parts and reduce manufacturing waste and rework.
This demands that design engineers of products that must be manufactured must be
cognizant of the capabilities of the production tooling and manufacturing process.

A software product is a complex “system” that is made up of many collaborating
parts. It is not sufficient to simply decompose software requirements and allocate
them to software components and units. Software IPPD must resolve design chal-
lenges and complexity by establishing the product architecture. The development of
the functional architecture addresses software control flow, data exchanges, perfor-
mance, resource utilization, and detection and response to failure conditions. The
physical architecture addresses the manner in which software structural units and
components collaborate and are integrated to comprise the final software product.
The software architecture represents the design of the software product with suffi-
cient information to permit structural units and component behaviors to be specified.

Software IPPD differs from traditional software development due to the nature
of the software product of which the implementation design is dependent on the
capabilities and programming constructs inherent in the compilation language. The
software functional and physical architectures must be developed with an under-
standing of implementation and testing challenges. This requires the involvement of
software implementation and testing subject matter experts in software engineering
activities. In addition, the post-development software sustainment processes must
be addressed so that they can be established and tested in a timely manner to sup-
port software product distribution. Therefore, the software engineering integrated
product team (SWE-IPT) must involve representatives from all software technical
organizations. This permits the software product architecture to be developed with
an appreciation for software implementation and sustainment issues. This approach
reduces life-cycle costs, minimizes risk to achieving project schedules, and restricts
the potential for requirements creep.

Additionally, software engineering IPPD ensure that sufficient time is invested in
establishing the product architecture where early design decisions can have the most
significant impact on project and process success. During the architecture defini-
tion phases, design alternatives should be evaluated via modeling and prototyping to
determine the best approach to proceed with. Prototyping should not be left until soft-
ware implementation because it defers important design decisions to later phases of
development. Software implementation should be simplified to the design of software
units against the specification established by the physical architecture. This approach
is more consistent with hardware development where detailed models and equipment
prototypes are developed during detailed design to confirm design suitability.

81Software Integrated Product and Process Development

Table 5.1 aligns the traditional software development, software engineer-
ing, and hardware development phases to highlight the differences between these
approaches. Notice that software implementation and the designing, coding, inte-
gration, and testing of the software product is aligned with the hardware fabrication
phase. This alignment suggests that the software implementation effort is analogous
to hardware manufacturing. Therefore, the predominance of the software product

Table 5.1  Comparison of Hardware and Software Development Phases

Hardware
Development Phases

Traditional Software
Development Phases

Software Engineering
Development Phases

HWCI preliminary
design—evaluates the
system requirements
allocated to hardware
configuration items
and prepares a
specification of
requirements.

CSCI preliminary
design—evaluates the
system requirements
allocated to software
configuration items
and prepares the
software component
specifications
(allocation of software
requirements).

Software architecture
preliminary design—evaluates
the software requirements
and generates the software
product’s functional architecture.
Generates behavioral models to
assess product performance.
Results in the identification
and specification of functional
components and units.

HWCI detailed
design—develops
models and
prototypes to assess
design concepts
and generates
manufacturing
engineering drawings
and diagrams.

CSCI detailed
design—evaluates the
software component
requirements and
prepares the software
unit specifications
(allocation of software
requirements).

Software architecture detailed
design—evaluates the software
functional units and establishes
the software product’s physical
architecture. Generates models
and prototypes to support design
trade-off analysis. Results in the
identification and specification
of structural units and integrated
components. Establishes the
software integration strategy.

HWCI fabrication—
the production
organization utilizes
the engineering
drawings and
produces a working
prototype for testing.

CSCI code, testing, and
integration—designs,
codes, and tests
software units against
unit specifications.
Performs software
component integrations
and testing.

Software implementation—
designs, codes, and tests
software units. Performs software
integration and testing according
to the software integration
strategy. Performs product
testing to ensure the software
product is ready for acceptance
testing.

HWCI testing—
formally test the
hardware items
against their
requirements
specifications.

CSCI testing—formally
tests the software
configuration items
against their requirement
specifications.

Acceptance testing—formally
tests the software product
against its requirement
specifications.

HWCI = Hardware Configuration Item; CSCI = Computer Software Configuration Item.

82 CHAPTER 5  Software Integrated Product and Process Development

design effort, including modeling and prototyping, should be accomplished prior to
initiating software implementation.

5.1  Application of IPPD to software
Integrated product and process development is based on fundamental guidelines and
assumptions that have served the systems engineering community since the early
1990’s. The guiding principles of IPPD have been embraced by most agencies within
the federal government and commercial corporations that develop large, complex
products. The fundamental principles of IPPD were first established by the secretary
of defense, who mandated the use of IPPD in all systems acquisition programs.1

IPPD is defined as a management process that integrates all activities from
product concept through production/field support, using multifunctional teams to
simultaneously optimize the product and its manufacturing and sustainment pro-
cesses to meet cost and performance objectives. Its key tenets are as follows:

1.	 Customer focus: The primary objective of IPPD is to satisfy the customer’s
needs better, faster, and at less cost. The customer’s needs should determine the
nature of the product and its associated processes.

2.	 Concurrent development of products and processes: Processes should be developed
concurrently with the products that they support. It is critical that the processes
used to manage, develop, manufacture, verify, test, deploy, operate, support, train
people, and eventually dispose of the product be considered during product devel-
opment. Product and process design and performance should be kept in balance.

3.	 Early and continuous life-cycle planning: Planning for a product and its pro-
cesses should begin early in the science and technology phase (especially
advanced development) and extend throughout a product’s life cycle. Early life-
cycle planning, which includes customers, functions, and suppliers, lays a solid
foundation for the various phases of a product and its processes. Key program
events should be defined so that resources can be applied and the impact of
resource constraints can be better understood and managed.

4.	 Maximize flexibility for optimization and use of contractor unique approaches:
Requests for proposals (RFPs) and contracts should provide maximum flex-
ibility for optimization and use of contractor unique processes and commercial
specifications, standards, and practices. They should also accommodate changes
in requirements and incentivize contractors to challenge requirements and offer
alternative solutions that provide cost-effective solutions.

5.	 Encourage robust design and improved process capability: Encourage use of
advanced design and manufacturing techniques that promote achieving quality
through design and products with little sensitivity to variations in the manufac-
turing process (robust design), and focus on process capability and continuous
process improvement.

1 DoD Guide to Integrated Product and Process Development, Version 1.0, Feb. 5, 1996.

835.1  Application of IPPD to software

6.	 Event-driven scheduling: A scheduling framework should be established that
relates program events to their associated accomplishments and accomplish-
ment criteria. An event is considered complete only when the accomplishments
associated with the event have been completed as measured by the accomplish-
ment criteria. This event-driven scheduling reduces risk by ensuring that prod-
uct and process maturity are incrementally demonstrated prior to beginning
follow-on activities.

7.	 Multidisciplinary teamwork: Multidisciplinary teamwork is essential to the
integrated and concurrent development of a product and its processes. The
right people at the right place at the right time are required to make timely
decisions. Team decisions should be based on the combined input of the entire
team (e.g., engineering, manufacturing, testing, logistics, financial manage-
ment, and contracting personnel) to include customers and suppliers. Each
team member needs to understand his or her role and support the roles of the
other members, as well as understand the constraints under which other team
members operate. Communication within teams and among teams should be
open with team success emphasized and rewarded.

8.	 Empowerment: Decisions should be driven to the lowest possible level com-
mensurate with risk. Resources should be allocated at levels consistent with
authority, responsibility, and the ability of the people. The team should be
given the authority, responsibility, and resources to manage their product and
its risk commensurate with the team’s capabilities. The team should accept
responsibility and be held accountable for the results of their effort.

9.	 Seamless management tools: A framework should be established that relates
products and processes at all levels to demonstrate dependency and inter-
relationships. A single management system should be established that relates
requirements, planning, resource allocation, execution, and program track-
ing over the product’s life cycle. This integrated approach helps ensure teams
have all available information thereby enhancing team decision making at all
levels. Capabilities should be proved to share technical and business infor-
mation throughout the product life cycle through the use of acquisition and
support databases and software tools for accessing, exchanging, and viewing
information.

10.	 Proactive identification and management of risk: Critical cost, schedule, and
technical parameters related to system characteristics should be identified
from risk analyses and user requirements. Technical and business performance
measurement plans, with appropriate metrics, should be developed and com-
pared to best-in-class industry benchmarks to provide continuing verification
of the degree of anticipated and actual achievement of technical and business
parameters.

While many of these principles integrate project management and techni-
cal competencies, the adaption of IPPD to software development must empha-
size the technical challenges associated with software engineering. The software

84 CHAPTER 5  Software Integrated Product and Process Development

engineering practices discussed in this book are passed on an IPPD approach.
Therefore, the following sections will address how IPPD tenants have been applied
to the engineering of software products.

5.1.1  Customer focus
This tenant of IPPD identifies four central themes for establishing a quality soft-
ware product:

1.	 Customer needs should determine the nature of the software product and
processes.

2.	 Products should satisfy customer needs better (improved quality).
3.	 Products should satisfy customer needs faster (time-to-market).
4.	 Products should satisfy customer needs at lower cost (reduced product and life-

cycle costs).

These themes are admirable goals that are not easy to achieve. If methodolo-
gies or approaches to software development were sufficient to fulfill these man-
dates, then there would be no need for further research or rhetoric about improving
software development. However, according to the CHAOS2 reports for a period of
15 years, the success rate for software development projects hovers around 28%,
an average of 37% of the projects were considered challenged,3 and the remaining
35% were impaired.4 Therefore, one can surmise that the current methodologies,
tools, and techniques for software development are not adequate to fulfill this tenet
of IPPD. Throughout this material, these customer focus themes have been incorpo-
rated as the nucleus of the software engineering philosophy.

Throughout the software engineering process the emphasis of verification and
validation is to ensure that the software product architecture definition will satisfy
stakeholder needs and expectations. The term stakeholder is used to represent all
customers of the technical effort, including project management, customers, end
users, suppliers, and product sustainment organizations. The concept of achieving a
balance among product requirements, product architecture, sustainment processes,
and project objectives is supported by the conduct of trade-off analysis and risk
assessments.

5.1.2  Concurrent development of products and processes
The total scope of a software development project must address the develop-
ment of the software product, as well as the processes by which the product will

3 The project is completed and operational but overbudget, over the time estimate, and offers fewer
features and functions than originally specified.

2 CHAOS, The Standish Group Report, 1995.

4 The project is cancelled at some point during the development cycle.

855.1  Application of IPPD to software

be implemented (software equivalent of manufacturing), tested, and supported. In
addition, a software product requires the establishment of a computing environ-
ment within which it operates. The computing environment involves a number of
computing devices, workstations, storage devices, networking equipment, the target
operating systems, middleware, and associated applications (e.g., database manage-
ment system, DBMS).

Within the software development project there are a number of processes that
are affected by the definition of the software product architecture. The three pri-
mary processes involved in the product development are software implementation,
computing environment implementation, and software testing. The three primary
processes involved with product sustainment are product distribution, product train-
ing, and product support. Product support can be further decomposed into several
processes, such as customer support or help desk operations, problem resolution,
and product enhancements. However a software development project identifies
these processes, they must be defined, designed, implemented, and tested concur-
rently with the development of the software product. Figure 5.1 aligns these process
development efforts with the software development framework that addresses the
software product development phases.

Each of these software processes involves facilities, equipment, staffing, pro-
cedures, and associated resources to be available to support execution of assigned
tasks. These process areas must be defined, designed, implemented, and tested in a
timely manner to support the software product development schedule. The defini-
tion of these processes is influenced by the definition of the software product and
cannot be implemented independently. Therefore, the mandate imposed by an IPPD
philosophy is that these processes must be defined simultaneously with the soft-
ware product. Software product design approaches may have significant impacts
on one or more of these processes and life-cycle costs. Therefore, representatives
from these process areas must be involved in the software engineering activities
that define the software product architecture. This collaborative arrangement will be
discussed further in the “Multidisciplinary Teamwork” section later in the chapter.

Requirements
Definition

Implementation

Preliminary Detailed Code & Test Integration Product Testing
Acceptance

Testing

Software Development

Post-development Process Preparation

Computing Environment Preparation

Definition Design Implementation Qulaification Supports software
Product Testing

Post-development Process
Operations

Distribution Oprations
Training Operations
Customer Support Operations
Product Support Operations

Process Definition Process Design Process Implementation Qualification

Architecture Definition

FIGURE 5.1

Concurrent development of products and processes.

86 CHAPTER 5  Software Integrated Product and Process Development

5.1.3  Early and continuous life-cycle planning
The IPPD philosophy expands the definition of development to address the product
life cycle. This involves more than the development of the product—establishing
the infrastructure for post-development software sustainment. This involves con-
sidering how the product may be evolved over time through a number of iterative
development efforts, as well as how the advancement of computing technology may
affect the product design and computing environment composition. The variable
element of the product life cycle must be identified early to ensure that the software
product architecture is established to facilitate the product’s evolution. Planning
the product development and life-cycle sustainment activities must begin early
in the product conceptual definition. The planning activities must be revised to
continually incorporate the most current knowledge and understanding of the effort
needed to complete the initial product development and initiate the post-develop-
ment efforts.

This captures the premise behind iterative and incremental software devel-
opment approaches. They recognize that a software product will evolve through-
out its life cycle. Therefore, it is prudent to plan the software product’s evolution
around several iterations of software development to provide increments of prod-
uct functionality and performance. Under the IPPD philosophy, the initial devel-
opment of the software product represents a large development effort due to the
need to establish the product architecture. During software sustainment, the prod-
uct is modified, enhanced, or extended by additional iterations of the development
activities. Whenever the software product must undergo significant architectural
redefinition, a new software development project should be established. For each
major iteration of software development, the associated life-cycle processes may
need to be redeveloped to accommodate the changes in the product’s architecture.
Figure 5.2 shows the sequence and alignment of software development projects and
post-development software sustainment iterations.

Software Development
Iteration 1

Software Sustainment
Iteration 1.1

Software Sustainment
Iteration 1.2

Software Sustainment
Iteration 1.3

Software Sustainment
Iteration 2.1

Software Development
Iteration 1.3

Revision 1.1

Revision 1.2

Revision 1.3

Revision 2.1

Product Version 1.0

Product Version 2.0

FIGURE 5.2

Iterative and/or incremental software life-cycle planning.

875.1  Application of IPPD to software

5.1.4  �Maximize flexibility for optimization and use of contractor
unique approaches

This tenant of IPPD focuses primarily on agreements between customers, develop-
ers, suppliers, and subcontractors. Innovative techniques to software development
can be both beneficial and detrimental to project success. While new or unproven
approaches may appear advantageous, they should be selectively instituted under
trial conditions to ensure they produce the desired results.

The second statement within this tenant addresses a concept of challenging
requirements and offering alternative solutions that prove cost effective. This is
a valuable idea that provides several benefits whenever it is applied. Challenging
the validity of requirements improves the precision by which software require-
ments are captured and expressed. Stakeholder representatives typically view the
software product from their own perspective. Thus, they will support the require-
ments that embellish the characteristics of the software product they are concerned
with. Stakeholders must be challenged to identify what the software product must
do and not overemphasize the importance of features or characteristics that are nice,
sophisticated, or impressive.

Software requirements must be solicited and gathered from many sources. The
complete set of requirements must be clarified and prioritized to establish the prec-
edence of product functions, features, and other characteristics. Each individual
requirement imposes a cost on the development effort, therefore challenging the
validity of the assists in weeding out the unnecessary or secondary stakeholder
needs and expectations. The objective must be to reduce the set of requirements
to the minimal necessary to result in a viable product that supports customer and
stakeholder needs, are clearly specified so that there is no confusion concerning
what is intended by the requirements statement, and fit within the project scope of
resources and scheduled milestones.

In some instances, stakeholders do share the financial burden associated with
their defense of particular requirements. If a company is funding a software devel-
opment effort, its representatives may feel responsible for getting the most prolific
product for their money. They may misrepresent the importance of features and
may argue the merit of unnecessary requirements with the software development
team. Such representatives do not understand that they may cause the development
effort to be doomed from the start by overburdening the development effort with
excessive requirements. It is always necessary to challenge the validity of software
requirements and to prioritize them before determining the minimal set that fits
within the development project’s constrained resources.

Once the software development effort has begun, any proposed changes to
the requirements baseline must be challenged immediately. The addition of new
or modifications to existing requirements may necessitate significant rework to
incorporate the change into the product architectural design. The cost associated
with a requirement change must account for the effort to incorporate the design

88 CHAPTER 5  Software Integrated Product and Process Development

modification throughout the affected product documentation. In addition, the organ-
izational plans, technical plans, work packages, schedules, and related planning
documents must be updated to address each change. If a proposed change can be
delayed and incorporated in a future version of the software product, then it may be
best to accept the change but to postpone its incorporation into the software product.

5.1.5  Encourage robust design and improved process capability
This tenant addresses improving the software design (software engineering), imple-
mentation, testing, and post-development process cohesion. The intent is to estab-
lish software design techniques that facilitate software implementation (design,
coding, integration) and testing. This tenant is satisfied by establishment of the
software architecture as the foundation for software implementation. The transition
from software product architectural design to software implementation is enhanced
by developing software product specifications for every structural unit and compo-
nent. The software integration strategy is developed during the detailed architec-
ture definition activity and provides a roadmap for software integration and testing.
Therefore, the material contained herein is intended to fulfill this tenant by improv-
ing the software product design and development processes.

5.1.6  Event-driven scheduling
Whenever this material addresses scheduling, it refers to the integrated master plan
and schedule (IMP/IMS). The IMP is an event-driven schedule that identifies the
accomplishments that must be achieved and the criteria that must be satisfied for
work to be considered complete. The IMS is a date-driven schedule that aligns
organizational and technical plans with the project milestones. This is addressed in
Chapter 4 and is further discussed throughout the remainder of this book as needed.

5.1.7  Multidisciplinary teamwork
Conducting the software engineering practices expressed in this book requires the
use of IPTs. The primary integrated product team is the SWE-IPT, which is respon-
sible for developing the software architecture. Additionally, four additional IPTs are
identified that address software implementation, software test and evaluation, post-
development software sustainment processes, and project control. Each IPT should
involve members whom advocate for stakeholder needs, as well as representatives
from each of the technical organizations. Additional IPTs may be established by the
project or SWE-IPT as deemed advantageous to achieving project objectives.

5.1.8  Empowerment
The software development planning and scheduling activities involve all technical
organizations that prepare detailed plans for accomplishing the tasks assigned to
them via work packages. These plans are integrated by the SWE-IPT to form an

895.2  Software engineering and development

integrated technical plan and schedule (ITP/ITS). The ITP and ITS are combined
with the work plans of other project management and support organizations to form
the IMP and IMS. The work breakdown structure, IMP, and IMS provide the basis
for task execution, and each technical organization must be held accountable for
achieving results.

Technically, the software product architecture establishes the structural unit and
component specifications for software implementation. These specifications permit
the software implementation team members to design, code, and test software units
with complete design decision authority. The software integration strategy estab-
lishes the approach for software component integration and testing and the software
implementation team should be authorized to establish the procedures for software
integration and testing.

5.1.9  Seamless management tools
This book provides the basis for establishing integrated software engineering tools
that provide planning, product architecture definition, progress tracking, status
reporting, configuration control, extended requirements traceability, and risk man-
agement capabilities. An integrated tool environment could provide a multidiscipli-
nary, collaborative tool framework and data repository.

5.1.10  Proactive identification and management of risk
Risk identification and management is addressed as an important element of soft-
ware analysis, which is fully explained in chapter 14, Software Analysis Practice.
A risk is anything that could potentially be encountered that would negatively affect
the achievement of project objectives. Since planning and design entail some form
of decision making, it is best to identify the risks inherent with each alternative.
This will enable the SWE-IPT to make architectural design decisions with more
knowledge of the inherent risks being assumed. Risk abatement plans are encour-
aged to address risk-tracking procedures and the criteria that would initiate each
contingency course of action.

5.2  Software engineering and development
The current situation confronting software development projects is assessed in
chapter 6, Impediments to Software Design. The success of every software develop-
ment project is dependent on establishment of a product architecture as the foun-
dation upon which the software product can be implemented (programmatically
designed, coded, integrated and tested), tested and supported throughout its life-
cycle. The remainder of this book will address the software engineering and devel-
opment tasks. The software engineering tasks are addressed throughout Section 2.
Each chapter in that section focuses on a major element of the software engineering

90 CHAPTER 5  Software Integrated Product and Process Development

process identified in Figure 5.3. Table 5.2 identifies the chapters that address each
element of the software engineering process. Each chapter within Section 3 iden-
tifies the organizational tasks that must be performed during a phase of software
development, including software engineering, computing environment definition,
software implementation, software test and evaluation, and post-development soft-
ware sustainment.

Requirements
Analysis

Functional Analysis
And Allocation

Software Design
Synthesis

Software Implementation

Software Unit Design

Unit Coding and Testing

Component Integration & Testing

Software Analysis
And Control

KEY
Traceability
Verification
Validation
Design Alternatives

Chapter 8

Chapter 11

Chapter 14 & 16 Chapter 13

 Verification & Validation
Chapter 15

Software Data
Package

Change Requests

FIGURE 5.3

Software engineering practices.

Table 5.2  Alignment of Chapters to Software Engineering Practices

Element of Software Engineering Chapter Number and Title

Requirements analysis 7—Understanding Software Requirements
8—Software Requirements Analysis Tasks
9—Software Requirements Management

Functional analysis and allocation
and application design synthesis

10—Formulating the Functional Architecture
11—Functional Analysis and Allocation Practice
12—Configuring the Physical Architecture
13—Software Design Synthesis Practice

Software analysis, control,
verification and validation

14—Software Analysis Practice
15—Software Verification and Validation Practice
16—Software Control Practice

915.2  Software engineering and development

The software development project must be organized around the IPPD philoso-
phy and tenants. To accomplish this, the scope of the software development effort
must recognize and address the dependency of the software product on the comput-
ing environment, and the lack of a “manufacturing” phase of the software life cycle.
Software products involve a form of distribution where the electronic distributable
files are either replicated, packaged, and shipped to distributors or retailers, or the
files are provided via web services for download. Therefore, the software IPPD
organizational framework for work to be performed must reflect the structure iden-
tified in Figure 5.4. The boxes that are shaded represent separate project elements
that should be managed utilizing an IPT. Each of these IPTs should be responsible
for the definition, implementation, and qualification of the software product or pro-
cess they govern.

Software Development

Software
Product

Computing
Environment
Development

Software
Implementation

Software Test
and Evaluation

Product
Distribution

Product
Training

Software
Sustainment

Product
Support

FIGURE 5.4

Software IPPD organizational framework.

This page intentionally left blank

93Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00006-9

Impediments to Software
Design 6

CHAPTER

CHAPTER OUTLINE

6.1  Software as a raw material... 95
6.2  Evolution of software technologies.. 98

6.2.1  Software development methods and standards...................................101
6.2.2  Agile manifesto...105

6.3  Architecture-driven software development... 108

This chapter investigates the challenges associated with the development of a soft-
ware product. This investigation concentrates on identifying the inherent features
of software that obstruct the design of software products and the informal practices
applied to influence a software design. The characteristics of software as a “raw
material” are discussed, which contributes to the challenges of fashioning a soft-
ware product. This exploration investigates the history of programming as it has
evolved since Charles Babbage designed the first programmable computer, called
the Analytical Engine, in 1837. The history of software development is examined to
expose the challenges that threaten every software development project. The value
of software engineering is substantiated to demonstrate how it provides a progres-
sive, disciplined, and beneficial approach to software development.

In 1995, the Standish Group published the first CHAOS report from 1994,
which assessed the success rates associated with software development through-
out the industry. This report depicted the state of software development as being
woefully deficient. The Standish Group’s research showed that a staggering 31% of
commissioned software projects fail or are cancelled before they are completed, and
53% of projects experienced cost overruns of 189% of their original estimates. U.S.
companies and government agencies spent $81 billion for cancelled software pro-
jects and an additional $59 billion to complete projects that exceeded their budgets.
Software development had become a liability to the United States and worldwide
economic growth at that time.

The CHAOS study has been conducted every two years since 1994. The 2008
report published in 2009 indicated an increase in software development success
rates to 32% while only 44% of projects were challenged (late, over budget, and/or
with less than the required features and functions). Still, the failure rate (cancelled

http://dx.doi.org/10.1016/B978-0-12-407768-3.00006-9

94 CHAPTER 6  Impediments to Software Design

prior to completion or delivered and never utilized)1 for software development pro-
jects averaged 20% over the 15-year reporting period. This indicates that current
software development practices are incapable of reliably delivering software prod-
ucts on time or within budget. Table 6.1 provides a summary of the CHAOS report
results for the 15 years the data has been collected.

What has caused this chaotic situation is the premise that software, as a mate-
rial, lacks physical characteristics and, therefore, the application of traditional
engineering practices cannot be applied to the development of software products.
Software practitioners were left with no technical supposition on which to estab-
lish a software engineering discipline. Trailblazers in the software industry have
devised a myriad of software development methodologies that have delivered little
recognizable improvement with software development success. There is only one
other profession in which a 30% success rate is considered respectable, and no one
expects a baseball player to consistently hit above a 0.350 average.

Software has become a critical element of many consumer products. This
is a major concern since software is integrated into systems the public, govern-
ment agencies, and public and private institutions must depend on every day. The
issues of software liability and consumer protection are refocusing attention on
the inadequacies of current software development methods, techniques, and fads.
The software industry must establish formal software engineering practices upon
which software development can evolve into a dependable profession and signifi-
cantly improve software development project success rates and product dependabil-
ity. Figure 6.1 illustrates a conceptual progression of software development trends
from initial laboratory experimentation to consumerism. The evolution of software
programming languages and design techniques are associated with each stage of
evolution to demonstrate how these technologies have supported the procession of
software development as a legitimate profession.

The progression shown in Figure 6.1 represents a typical evolutionary path for
most new technologies. Consumer laws and protection agencies exist to ensure
that products that introduce new technologies will not cause serious injury, dam-
age, or destruction of property. The introduction of software into critical systems
and the consumer marketplace will be an incentive for the inevitable transition of
the software craft to a professional stature. Current software development tools,

Table 6.1  CHAOS Reports Summary

1994 1996 1998 2000 2002 2004 2006 2008

Successful 16% 27% 26% 28% 34% 29% 35% 32%
Challenged 53% 33% 46% 49% 51% 53% 46% 44%
Failed 31% 40% 28% 23% 15% 18% 19% 24%

1 See http://www.projectsmart.co.uk/the-curious-case-of-the-chaos-report-2009.html.

http://www.projectsmart.co.uk/the-curious-case-of-the-chaos-report-2009.html

956.1  Software as a raw material

techniques, and practices must be reinforced by practical engineering practices,
policies, and procedures.

There has been considerable research performed to apply some precepts to the
development of software products. The following sections will review the condi-
tions confounding the software industry by examining the evolution of software
development technologies, development, and management practices.

6.1  Software as a raw material
Engineering is the application of science, mathematics, and technologies to design
human-made structures, machines, and other manufactured products. This involves
the conversion of raw materials or parts that are fabricated, assembled, and inte-
grated to form larger, more complex products. Software as a “raw material” does
not exhibit any scientific properties that guide the design of a software product.
Software is fundamentally a set of routines composed of instructions in a language

FIGURE 6.1

Evolution and proliferation of software development technologies.

96 CHAPTER 6  Impediments to Software Design

that can be converted into a machine-readable format. At the computer processor
level, these instructions are encoded as positive and negative electrical charges that
denote binary values (0 and 1 to denote an on/off state, respectively). The com-
puter processor performs a variety of basic mathematical calculations to convert
data values. The computer operating system provides the management of computa-
tional execution and the software product’s interaction with computer input/output
devices and data storage equipment.

Computer science is a field of study that provides a research and development
thrust to promote advances in programming languages and computational theory.
Computational complexity theory investigates fundamental properties of data pro-
cessing algorithms that are highly abstract, while other branches of computer science,
such as computer graphics, emphasize real-world applications. The study of program-
ming investigates the definition and structure of software languages to address com-
plex data processing transactions. Computer science research often intersects other
disciplines, such as linguistics, mathematics, physics, statistics, and logic. However,
there has been a paltry amount of attention paid to establishing a dependable
approach to the design or engineering of software products. Most of the research has
been relegated to low-level programmatic design heuristics. The Encarta Dictionary
defines heuristics as “a method of problem solving for which no formula exists, based
on informal methods or experience, and employing a form of trial and error iteration.”

The development of software products with early programming languages
began with simple problem solving heuristics. This approach was supplemented by
a flow-charting technique used to describe the sequence of data processing actions
necessary to perform a computational function or procedure. As a technique, flow
charts were useful to identify control mechanisms (decision blocks and control
flow), input/output procedures, data processing steps (e.g., X=X+1), calls to sub-
routines (typically detailed in a separate flow chart), and data processing concur-
rency. The use of flow charts lost favor in the early 1980s due to the undesirable use
of goto(s) to describe arbitrary jumps in control flow. This resulted in “spaghetti”
code, which made understanding data processing flow difficult and impacted the
software maintenance challenge. However, the use of goto(s) was purely a result of
unstructured programming or improper programmatic design techniques.

Software is a very broad term used to identify a variety of computer programs
that operate computers and devices embedded with computer technologies. The term
hardware is used to describe the physical elements of a system or computer-based
system, while software refers to various types of programs or applications used to
operate a computer-based system. Software code is a set of instructions that can be
converted into a format that a computer can perform. Code is broken into procedures,
routines, functions, modules, objects, or other constructs to form parts or elements of
a larger program. This partitioning of data processing transactions originated due to
the challenge with the ever-increasing size and complexity of computer programs.

Within the software domain, there are references to a variety of terms that must
be clarified to distinguish some basic properties of software. Table 6.2 provides a
general explanation of these software product–related terms.

976.1  Software as a raw material

Table 6.2  Key Software Terms and Definitions

Term Definition

Code Instructions expressed in the syntax of a programming language that
can be compiled and executed regardless of the correctness of the
code or the validity of the data processing results.

Module An early structured programming term to refer to a self-contained
routine or procedure that represents a part or element of a larger
program. Modules represent a separation of concerns and improve
software maintainability by enforcing boundaries referred to as
interfaces. Modules are executed within a larger program through
the invoking of the module’s interface. A module interface expresses
the data items that are provided to and returned by a module when
invoked.

Modularity The compartmentalization and interrelation of the parts of a software
program. Module programming can be performed even where the
programming language lacks explicit syntactic features to support
named modules.

Object In object-oriented programming, a class is a module that
encapsulates the data attributes and set of procedures used to set
and retrieve their values. An object is an instance of a class that has
a unique identity (specific values that distinguish it from other objects
of that class), a state that describes the data values stored within an
object, and behaviors that specify the interfaces by which the object
can be accessed.

Program A combination of modules or objects that perform an array of
business or operational data processing tasks. The executable form
of a program is in binary form, which a computer can execute. The
human-readable form is expressed in source code in a software
language that the programmer can edit. A program in source code
form must be compiled, assembled, and linked with other essential
referenced library routines to produce an executable file.

Application A specialized program designed to perform business or operational
tasks. Application is a term used to distinguish general-purpose
programs, such as word processors, spreadsheets, video players,
etc., from system software and middleware. Applications manage
and integrate a computer’s capabilities, but do not directly support
the user in performing a business or operational task.

System software
and middleware

Middleware is software that provides computing services to software
applications beyond those available from the operating system, or
provides connections between software applications so that they can
exchange data.

Product Any software program or application that is being developed for the
express purpose of commercial distribution, customer delivery, or to
facilitate enterprise processes. A generic term used to address the
focus of a software development effort on the product and its post-
development processes.

98 CHAPTER 6  Impediments to Software Design

Software should be viewed as a set of data processing transactions that facilitate
a business or operational process. Data processing transactions describe the stimulus-
response nature of software execution. Almost all software modules are initiated by
some stimulus, perform some computational action or function to produce some
result, and transfer data processing control to another transaction. A large software
program involves a number of possible transactions that are accomplished by the
execution of a series of modules or routines. The sequence of module execution is
dependent on the outcome of the computational action, and some form of decision
or control logic determines how the transaction should proceed.

Because of its lack of physical characteristics, software represents a form of
artificial language used to:

●	 Perform mathematical computations or process symbols into meaningful data.
●	 Construct logical arguments that guide the flow of data processing transactions.
●	 Preserve data in digital format for future access.
●	 Interact with elements of the computing environment.
●	 Interact with elements of the business or operational system.

Therefore, software is a combination of linguistics, semantics (the study of mean-
ing), mathematical notation, logic, knowledge representation, and systems engi-
neering (problem solving in the presence of complexity).

As software products have grown in size and complexity, the application of
systems engineering practices to software development became more apropos due
to its emphasis on analyzing design challenges and reducing design complexity.
However, there has been no authoritative dictate to motivate or encourage the soft-
ware industry to adopt systems engineering precepts. Software pundits emerged
proposing numerous methodologies targeted at providing better software develop-
ment stratagems. However, most of these software methodologies were driven by
rapidly advancing computer technologies or program language–driven refinements,
such as object-oriented programming. As a result, most software practitioners lack
the fundamental skills necessary to cope with the convoluted dilemma associated
with the design of a software product.

6.2  Evolution of software technologies
The software field of study is still in its early stages of refinement. It involves a
number of research topics that are struggling to keep pace with the advances in
computer technology. In addition, the application areas for software technology are
spreading rapidly into almost every facet of society, including transportation (air-
craft, ships, automobile, trucks, trains, and traffic management systems), communi-
cations, entertainment, business information processing, health care, construction,
manufacturing, utilities, wholesale/retail, financial services (banking and invest-
ment), education, personal computing, etc. However, the advancement of program-
ming and, most importantly, techniques for designing software products has been
overwhelmed and derailed by a growing demand for software.

996.2  Evolution of software technologies

The advances of software as a technology can be better appreciated by viewing
a timeline of software-related technologies. Figure 6.2 provides a 70-year overview
of the evolution of selected advances in computer technology and programming
languages.2 This figure highlights the prominent programming languages that ena-
ble the development of software products. The highlights associated with software
programming between 1945 and 1985 are presented in Table 6.3.3 Programming
began as a specialized craft practiced by laboratory technicians working toward
advancing computing systems. These scientists originally worked in machine code
(binary 1’s and 0’s) to program very simplistic computations on very large comput-
ers with vacuum tubes. Machine code is a set of instructions executed directly by a
computer’s central processing unit (CPU).

FIGURE 6.2

Timeline of selected computer and programming technologies.

2 See http://en.wikipedia.org/wiki/Timeline_of_computing and http://en.wikipedia.org/wiki/Timeline_
of_programming_languages.
3 See http://www.computerhistory.org/timeline/?category=sl.

http://en.wikipedia.org/wiki/Timeline_of_computing
http://en.wikipedia.org/wiki/Timeline_of_programming_languages
http://en.wikipedia.org/wiki/Timeline_of_programming_languages
http://www.computerhistory.org/timeline/?category%26equals;sl

100 CHAPTER 6  Impediments to Software Design

Table 6.3  Software Program Language Milestones

Date Software Milestones

1945 Konrad Zuse began work on Plankalkul (Plan Calculus), the first algorithmic
programming language.

1948 Claude Shannon’s The Mathematical Theory of Communication showed
engineers how to code data so they could check for accuracy after
transmission between computers. Shannon identified the bit as the
fundamental unit of data and, coincidentally, the basic unit of computation.

1952 Mathematician Grace Hopper completed the A-0 Compiler, what is
considered to be the first compiler, a program that allows a computer to
use English-like words instead of numbers.

1953 John Backus completed speed coding for IBM’s 701 computer. Although
speed coding demanded more memory and compute time, it trimmed
weeks off of a programming schedule.

1957 FORTRAN (short for FORmula TRANslator), enabled a computer to
perform a repetitive task from a single set of instructions by using loops.

1960 A team drawn from several computer manufacturers and the Pentagon
developed COBOL, Common Business Oriented Language. Designed for
business use, early COBOL efforts aimed for easy readability of computer
programs and as much machine independence as possible.

1962 Kenneth Iverson published his book, A Programming Language (APL),
which led to the first practical programming language. APL was widely
used in scientific, financial, and especially actuarial applications. Powerful
functions and operators in APL are expressed with special characters,
resulting in a very concise program.

1963 ASCII—American Standard Code for Information Interchange—permitted
machines from different manufacturers to exchange data. ASCII consists
of 128 unique strings of 1’s and 0’s. Each sequence represents a letter of
the English alphabet, an Arabic numeral, and an assortment of punctuation
marks and symbols or a function such as a carriage return.

1964 Thomas Kurtz and John Kemeny created BASIC, an easy-to-learn
programming language, for their students at Dartmouth College.

1965 Object-oriented languages got an early boost with Simula, written by
Kristen Nygaard and Ole-John Dale. Simula grouped data and instructions
into blocks called objects, each representing one facet of a system
intended for simulation.

1969 AT&T Bell Laboratories programmers Kenneth Thompson and
Dennis Ritchie developed the UNIX operating system on a spare
DEC minicomputer. UNIX combined many of the time-sharing and file
management features offered by Multics, from which it took its name.
(Multics, a project of the mid-1960s, represented the first effort at creating
a multi-user, multitasking operating system.) The UNIX operating system
quickly secured a wide following, particularly among engineers and
scientists.

1976 Gary Kildall developed CP/M, an operating system for personal computers.
Widely adopted, CP/M made it possible for one version of a program to
run on a variety of computers built around 8-bit microprocessors.

(Continued)

1016.2  Evolution of software technologies

Following the introduction of C++, most of the contributions to the program-
ming field involved extensions of existing languages to accommodate object-
oriented programming or web-based application development. The early part of the
1990s began the introduction of integrated development environments (IDEs), such
as Microsoft’s Visual Studio. An IDE provides an integrated set of tools for soft-
ware development, such as source code editor, graphical user interface (GUI) con-
structors, software component libraries, debuggers, and build automation tools. The
evolution of software programming languages seems to have run its course as the
emphasis had shifted to improving programmer productivity.

During the 30-year period from 1960 to 1990, the rapidly changing landscape of
programming languages consumed the attention of students, instructors, and practi-
tioners as they struggled to maintain their proficiency and marketable skill set. New
programming languages cropped up and old languages were evolved to incorporate
features that could take advantage of the dramatic increases in computing power.
Changes in computing platforms, languages, storage technology, computer graph-
ics, and multimedia technologies have challenged the software industry’s ability to
produce products of which the dependability and longevity satisfies the needs of
customers, consumers, enterprise management, or investors.

6.2.1  Software development methods and standards
The development of software products has evolved through a series of forms that
have been dictated by programming languages, computer technologies, and soft-
ware methodologies. Early software programs were small, noncomplex assem-
blages of routines, subroutines, functions, or modules. Flow-charting techniques
were initially used to provide a design foundation from which software code could
be generated, converted to machine-executable format (compiled and assembled),
and verified to perform correctly. As the size and complexity of software programs

Table 6.3  Software Program Language Milestones

Date Software Milestones

1979 Harvard MBA candidate Daniel Bricklin and programmer Robert Frankston
developed VisiCalc, the program that made a business machine of
the personal computer, for the Apple II. VisiCalc (for Visible Calculator)
automated the recalculation of spreadsheets. A huge success, more than
100,000 copies sold in one year.

1981 MS-DOS, or Microsoft Disk Operating System, the basic software for the
newly released IBM PC, came out.

1985 The C++ programming language emerged as the dominant object-
oriented language in the computer industry when Bjarne Stroustrup
published The C++ Programming Language. Stroustrup, at AT&T Bell
Laboratories, said his motivator stemmed from a desire to write event-
driven simulations that needed a language faster than Simula.

(Continued)

102 CHAPTER 6  Impediments to Software Design

became larger and more industry specific, they became known as software applica-
tions. However, the flow-charting techniques could not scale accordingly to express
these larger design dilemmas.

A series of progressive software methodologies or design techniques were pro-
moted since the 1960s that attempted to improve the software development success
rates. Figure 6.3 provides a timeline that identifies the emergence of various soft-
ware development methodologies, techniques, and standards.4 This figure identifies
12 topics that are of concern to software engineering or the design of a software
product, 5 topics that are not related to software engineering, 3 topics associated
with programming automation, and 7 standards that address software development
best practices. Each of these categories of topics are briefly addressed in Table 6.4.

Despite all of these efforts by the software industry to regiment the develop-
ment of software products, the state of the practice is still chaotic. It is essential
for software development approaches to be bolstered by rigorous design techniques
that can contend with the difficulties associated with developing products out of a
material known as software. Developing any product requires disciplined adherence

FIGURE 6.3

The progression of software development methods and standards.

4 Data extracted and refined from David F. Rico, “Short History of Software Methods.”

1036.2  Evolution of software technologies

to a set of scientific principles and practices established to enable the raw mate-
rials to be fabricated into human-made parts and components; assembly and inte-
gration of these parts into larger, more complex components; and testing of parts,
components, and the final product. Within the manufacturing industry this process
is known as fabrication, assembly, integration, and testing (FAIT). In addition, there
is an investigative element of all product development efforts that strives to under-
stand the fundamental needs for a new product. This exploratory and analytical ele-
ment of product design establishes the specifications for the product, components,
parts, and FAIT strategy. This investigative element is responsible for the specifi-
cation, analysis, and synthesis (SAS) of the product, components, and parts from
which the product is to be produced.

Software engineering practices provide a framework for accomplishing the
SAS and developing the FAIT strategy, which results in a complete, noncomplex

Table 6.4  Categorized Software Development Topics

Topic Area Specific Items Discussion

Software
engineering
related

Flow charts
Structured design
Cost estimation
Code inspection
Structured analysis
Defect prevention
Software reuse
Risk management
Software architecture
Software metrics

These topics represent areas that
apply to software engineering, but
do not constitute a standalone
technique for developing a software
product architecture. Several are
not unique to software engineering
and are typical project management
practices.

Not related
to software
engineering

Object-oriented design
Object-oriented analysis
Agile
Unified modeling language
Rapid Application
Development (RAD)

Three of these topics are associated
with the implementation of object-
oriented programming languages.
RAD and Agile are nonstructured
team management approaches
focused on rapid prototyping and
short-term planning.

Automated
tools

CASE tools
Automated regression testing
Integrated development
environments

Automated tools that support
software implementation, especially
code generation and testing.

Software
development
standards

MIL-STD-1679 (Navy)
DOD-STD-2167
DOD-STD-2167, Rev A
MIL-STD-498
IEEE-12207-1996
IEEE-1220 (Systems
Engineering)
ISO-IEC-12207

Industry and Department of Defense
standards that address software
development activities and tasks.
Emphasis is on software project
management, documentation, and
configuration control. Note: IEEE-
1220 represents the most definitive
standard on systems engineering
principles and practices.

104 CHAPTER 6  Impediments to Software Design

software product architecture. The software requirements analysis practice trans-
forms stakeholders’ needs and expectations into the software product, structural
component, and unit specifications. The functional analysis provides the systematic
techniques for understanding what data processing transactions the software prod-
uct must perform to accomplish the product requirements as they are decomposed
into software functions. The software design synthesis practice establishes the
structural configuration of the software product and the FAIT strategy. The result
is a completely specified software product architecture documented as the software
technical data package (TDP). This software TDP includes the specifications, dia-
grams, drawings, and software integration strategy that facilitate software imple-
mentation (programmatic design, coding, integration, and testing).

The software industry has not been able or willing to step up to the demands
of transitioning from a chaotic craft to a disciplined engineering profession. The
unwillingness of software professionals to adopt a more disciplined set of prac-
tices for developing software products is a result of their unawareness and inex-
perience with other engineering disciplines. Ignorance is bliss goes the old saying!
This implies that it is often preferred not to know something due to the unpleas-
ant or foreboding consequences of knowing and accepting the truth. This is not to
blame or insult software professionals; ignorance is simply a lack of awareness,
knowledge, or education that prohibits their pursuing a better approach to design-
ing software products. Because software personnel do not have awareness that
there is a better way to perform their vocation, they continue to flail about clutching
onto newly proposed stratagems in hopes of hiding their lack of competency. Most
software professionals have been trained to program, which is predominantly a
low-level design tactic. There has been no software methodology that offers a com-
prehensive approach to design a complete software product.

Software prototyping logically emerged as a way to rapidly develop software
products with little or no effort to design the complete product. This approach
has been renamed and repackaged in various clandestine attempts to divert atten-
tion away from the obvious lack of a formal design approach and permit software
mavens to perform what they know how to do, which is program. This concept
of software prototyping originated as a software development methodology enti-
tled Rapid Application Development (RAD). The RAD philosophy suggests that
a software product can be developed with “minimal planning and the incremen-
tal building of a prototyping. The ‘planning’ of software developed using RAD
is interleaved with writing the software itself. The lack of extensive preplanning
generally allows software to be written much faster, and makes it easier to change
requirements.”5 This has led to the establishment of the Agile Manifesto, which
attempts to formalize prototyping as a genuine software development methodology.

Fundamentally, the software development occupation will only be elevated
to professional status when a set of principles and practices that guide its teach-
ing, conduct, and management has been established. Software development

5 See http://en.wikipedia.org/wiki/Rapid_application_development.

http://en.wikipedia.org/wiki/Rapid_application_development

1056.2  Evolution of software technologies

methodologies cannot be permitted to continually morph into new fads that avoid
the reason for the chaotic state of the software development industry. Software
development suffers for lack of attention to designing a product. Most method-
ologies properly accept that requirements are important and code generation is
easy. However, there has been no significant contribution to instituting a rigorous
and meticulous method of a establishing design for a complete software product.
Programmatic design practices are at the coding level of the design hierarchy,
and, therefore, completely insufficient for the establishment of a software product
architecture.

The term architecture is used within this manuscript to distinguish it from what
most engineering disciplines refer to as design. Software products represent a com-
posite of various subroutines that contribute to data processing transactions. There
are no established design guidelines upon which to structurally arrange or organ-
ize these software routines. This is a fundamental challenge to the generation of
new software products and is a consequence of software’s lack of physical proper-
ties. Systems engineering principles and practices provide the most relevant disci-
pline upon which to base software engineering competencies. Systems engineering
provides a rigorous approach to establishing the architecture for a complex prod-
uct. Therefore, software engineering practices that are derived from systems engi-
neering must be promoted as the founding guidelines for a software engineering
profession.

6.2.2  Agile manifesto
The proponents of the Agile Manifesto must have been confounded by the situa-
tion they found themselves in regarding their profession. No software development
methodology, technique, or practice enabled them to achieve success. Therefore,
the Agile proponents formulated a manifesto to establish a guild surrounding a set
of principles for software development based on rapid prototyping, incremental
product delivery, and absolutely no product design. They needed to convince execu-
tives that there was a manner in which software products could be delivered that
provided “value” to their customers. To accomplish this they devised a diversion-
ary tactic that, if accepted, would enable them to do what they have been trained to
do—program. The Agile Manifesto is presented in Figure 6.4 to provide a basis for
discussing its merits and shallow misrepresentations.

The manifesto begins with a proclamation that the advocates of Agile Software
Development were “uncovering better ways of developing software by doing it.”
On the surface, this statement implies that by the mere act of developing software
the design methods and techniques were spontaneously improving. However, the
40-plus-year history of software development techniques has not resulted in such
perceptiveness. The software development industry’s record of success has been
below 30%, and since the adoption of Agile techniques, has not improved notice-
ably. Therefore, there is a lack of substantiation for this claim of recognized
improvement in the art of software development.

106 CHAPTER 6  Impediments to Software Design

The Agile Manifesto identifies the convictions that the advocates value. These
beliefs were revealed by their experiences in past software development efforts and
are interpreted as follows:

1.	 Individuals and interactions over processes and tools. Software personnel and
the manner in which they work together are more important to the success of
a software development effort than processes or tools. There is no underlying
basis for this claim as most professional occupations have concluded that pro-
cesses and tools are vital to success, cost control, and quality results.

2.	 Working software over comprehensive documentation. This statement implies
that Agile is based on a rapid prototyping methodology that produces work-
ing prototypes. The prototypes are evolved and enhanced to provide the final,
deliverable software product. The belittling of software documentation infers
that documenting the software design does not contribute to the development of
the software product. If the software design is not documented, then how is it
comprehended by the team of programmers? This suggests that software devel-
opment is best served by the development of software prototypes, which are not
designed or documented.

3.	 Customer collaboration over contract negotiation. Within the ISO standard on
software development processes there is a process for establishing an agreement
that guides the software development effort. The agreement may be a formal
contract between business entities or internal to an entity between management
and the software development project. However, contracts or agreements are

FIGURE 6.4

Agile Manifesto.6

6 See http://agilemanifesto.org/principles.html.

http://agilemanifesto.org/principles.html

1076.2  Evolution of software technologies

used to hold the software development team accountable. The Agile proponents
do not want to be held accountable. (Wouldn’t every employee enjoy being
compensated with no accountability? Agile is every derelict’s dream employ-
ment arrangement!)

4.	 Responding to change over following a plan. Change is inevitable, but there
must be a plan upon which progress can be measured. By suggesting that a
software product can be produced without a plan is hypocritical. Every product
development project must have a plan against which progress can be measured
and the development team held accountable. Oh, that’s right! With Agile, soft-
ware development organizations are not held accountable. So what benefit is a
plan? The definition of design is to create a detailed plan of something. Besides,
as the customers keep changing their desires, the software development team
can enjoy a prolonged engagement and continued employment because they
cannot be held accountable for schedule delays. (When will the product be fin-
ished? Who cares!)

The authors and proponents of the Agile Manifesto certainly did not intend for
Agile’s guiding principles to be interpreted so blatantly and conspicuously. They
obviously have given up trying to follow standard project management and soft-
ware development techniques due to the high rate of disappointing results while
encumbered by these practices. They were unaware of any approach that would
result in the achievement of software development plans, objectives, or agreements.
They determined that their best chance for success was to do what they had been
trained to do—program. This resulted in a manifesto for a technical discipline that
abolishes plans, schedules, design and documentation, agreements, or culpability
when the project fails.

When a dance couple trains unrelentingly to win the world championship in the
Waltz competition, they are dedicated to their profession. When their opportu-
nity finally presents itself and the music begins … and it’s a tango … the couple
dances the waltz. After all, the waltz is what they have been trained to execute
and any other response would lead to disappointment, so why not dance the
dance they know how to perform?

The previous assessment of Agile must be taken in context. Agile is a program-
ming methodology and works well as a form of software implementation. However,
Agile cannot succeed unless it is fortified by software engineering and a predefined
software architecture. The proponents of Agile are just unaware of software engi-
neering as described in this manuscript and therefore are attempting to “do the best
that they can.” As I reviewed my initial treatise on the Agile Manifesto I became
aware that what they are proposing has value when it is relegated to the software
implementation stage of software development. The usefulness of Agile or any
other software methodology is greatly enhanced when coupled with a preceding
software engineering effort. The next section discusses how an architecture-driven
approach to software development, which combines software engineering and an

108 CHAPTER 6  Impediments to Software Design

agile methodology, would greatly enhance the probability of success of a software
development project.

6.3  Architecture-driven software development
The current state of software development is greatly impaired because there has not been
guidance on how to develop a software product architecture. Every attempt to generate a
software product based on programmatic design techniques or methodologies has failed.
Even those efforts that were deemed successful have resulted in software products that
suffer from a poorly conceived architectural structure. This results in a costly software
sustainment effort and reduces the longevity of the software product life cycle.

Software engineering provides the technical nucleus and governance that enable
software implementation to be well planned and executed. Programmers who have
not been educated in software engineering struggle with understanding stakeholder
requirements, maintaining a tactical plan of action, and balancing perceived cus-
tomer value with project resources. If a software development project is driven only
by delivery objectives, then there is little chance of ensuring that the software prod-
uct will ever be delivered. Therefore, why not simply accept the inevitable need to
incrementally deliver incomplete products that hopefully will placate customers and
management. It may be comforting to believe that customers are receiving value with
an unending stream of incremental deliveries. However, customers faced with a con-
tinual need to be retrained on an ever-changing product configuration will eventu-
ally abandon their hope of ever receiving a complete, stable product. While product
improvements are desirable, frequent and radical changes will only make the product
architecture unstable and more suspect to eventual collapse, disorder, and turmoil.

The need for a software product architecture is paramount for establishing an
initial software product release that can be evolved over time with future enhance-
ments and new features. Software engineering is compelled to resolve stakeholder
confusion, comprehend the problem space, and establish a structural design solu-
tion that provides a stable and enduring product foundation. Any software develop-
ment effort that attempts to develop a product without an architectural framework
has, as history demonstrates, a 30% chance of success.

The architecture-driven software development model described in this manu-
script is represented in Figure 6.5. In the center of the Venn diagram are the soft-
ware engineering practices that are paramount to successful software product
development. Aligned on top of this model is the project management framework,
which is generalized to address project objectives, budgets, plans, and schedules.
The remaining six interleaving circles represent the typical software development
stages, including requirements definition, architectural definition, software imple-
mentation, and acceptance testing. The preliminary and detailed design stages have
been redefined to establish a software product architecture based on software engi-
neering practices. The software technical data package provides the specifications
and supporting design information needed for the product to be implemented.

1096.3  Architecture-driven software development

This model provides a holistic approach to software development that is predi-
cated upon employing software engineering as the nucleus for planning and executing
the software development effort. It involves representatives from a variety of software
disciplines to ensure that the software product requirements are complete and consist-
ent, the technical plans can be accomplished with the established resource budgets,
and the software product architecture provides a structurally dependable framework
for software enhancements and evolution throughout the product life cycle.

The failure of previous software methodologies is due to a lack of understand-
ing how to design and foster a software product architecture. While software devel-
opment standards and management practices have been well devised, software
methodologies have leveraged the strengths of programming languages to facilitate
proper programmatic design techniques. What has been lacking is the knowledge
and skills necessary to establish a software product architecture. Figure 6.6 depicts
an Agile-driven model of software development. This model leaves out the software
engineering centerpiece and the definition stages focused on establishing a soft-
ware product architecture. Without this software engineering foundation, Agile sim-
ply sidesteps the all-important “design” dilemma and proceeds from requirements
directly into software implementation. (Note: Based on the Agile Manifesto, it is
difficult to determine the need for the project management element so it has been
included in the Agile-driven model.)

FIGURE 6.5

Architecture-driven development model.

110 CHAPTER 6  Impediments to Software Design

The Agile-driven software development model is a result of years of frustration
on the part of software professionals who could not understand why software devel-
opment was so difficult and failure-prone. Therefore, the proponents of Agile have
established a guild of software professionals whom have come to believe that the
incremental delivery of an evolving product is delivering value to the customer. To
“sell” this methodology they insulated themselves from the most problematic ele-
ments associated with software development:

●	 Deriving a complete set of requirements before the coding begins.
●	 Focusing on incremental delivery versus a comprehensive project plan.
●	 Ignoring the need to design and document the software product.

Less time wasted on unnecessary overhead tasks and more time spent fixing the
product so it works.

Conversely, these problematic elements associated with software development
happen to be the competencies of software engineering. Software engineering pro-
vides the basis for coalescing stakeholder needs and expectations into a complete
and consistent set of software requirements. Changes to the established software
requirements baseline are interrogated against the software architecture, project
plans, and resource allocation to ensure that a proposed change can be accom-
modated. Changes that are necessary can be incorporated into the technical plans

FIGURE 6.6

Agile-driven software development model.

1116.3  Architecture-driven software development

and schedule if there are sufficient resources to ensure project success. Otherwise,
changes should be scheduled for a future revision.

Establishment of a software architecture permits the software implementation
effort to be properly scoped, planned, and accomplished efficiently. Each struc-
tural unit identified by the physical architecture is adequately specified to permit
programmatic-level design, coding, and testing. The software integration strategy is
established during detailed architecture definition to permit software integration and
testing to proceed according to an established work plan. The software work break-
down structure identifies the work packages and resources allocated to each soft-
ware implementation activity. The result should be an uncomplicated, systematic
software implementation and testing of a complete software product deliverable.

This assessment of the Agile methodology acknowledges that software imple-
mentation is difficult to plan and accomplish in an organized manner if there is no
software architecture. Software engineering establishes the structural foundation
upon which the software implementation plan can be predicated. What must be
appreciated is that any software methodology or approach that ignores the value
of a software architecture is doomed to fail. Figure 6.7 depicts the software devel-
opment Venn diagram including both software engineering and the Agile method-
ology. This model can be altered to accommodate any software implementation
methodology. Simply insert the preferred software implementation methodology
wherever the term Agile appears!

FIGURE 6.7

Software development combining software engineering and Agile.

This page intentionally left blank

Software
Engineering
Practices

SECTION

2
This section introduces the six software engineering practices that are utilized to
develop the software architecture. These practices provide the underlying founda-
tion for all engineering disciplines and are uniquely customized for each discipline.
These software engineering practices have been adapted from the system engineer-
ing discipline because they deal with controlling product complexity. Each of the
practices is expressed in a set of tasks that contribute to exploring a problem/solu-
tion space in a quest for a viable, affordable architectural resolution.

These practices are not independent and must be applied iteratively and recur-
sively, as needed, to devise a material solution or further constrain the problem
space to enable a feasible solution to be realized. The practices apply iteratively to
permit a problem/solution space to be explored in a layered approach. In addition,
the practices must be applied iteratively to reconsider implications of architectural
decisions on previously defined elements of the architecture. This iterative appli-
cation of software engineering practices permits a problem/solution space to be
refined in a top-down, structured approach.

114 SECTION 2 ﻿  Software Engineering Practices

These practices are applied recursively to permit a deep dive into the problem/
solution space and bring to the surface technical challenges that affect upper-level
architectural solutions. The practices may be invoked on successive layers as the
problem is explored and again on the return to higher levels of the architecture.
Each iteration or recursive application of a practice is focused on the current level
of the architectural problem/solution space being considered.

Each of the software engineering practices provide the fundamental constructs
associated with all professional engineering disciplines. These constructs are
defined in the following table.

Software Engineering
Practice Engineering Constructs

Requirements
analysis

The evaluation of stakeholder needs and operational
conditions that affect the architectural solution. Provides
an analytical means of specifying requirements that are
unambiguous to stakeholders, developers, and project
management personnel.

Functional analysis
and allocation

The investigation into behaviors that bound the functional
and performance characteristics associated with the
product, operational environment, and sustainment
processes. Identifies failure conditions that the product
must be prepared to encounter, as well as the availability of
resources to support effective operations.

Design synthesis Identifies “material” solutions that contribute to satisfying
specified requirements. Derives design drawings and
models to confirm the effectiveness of a design solution
to fulfilling the requirements. Establishes the structural
configuration of the product and generates the “build to”
drawings and specifications against which the physical
element (part, component, etc.) will be fabricated.

Software analysis Provides the supervision of design alternative comparisons
to assess the merits and disadvantages of potential
solutions to determine the most balanced approach
with which to proceed. This involves assessing the risk
associated with each proposed architectural alternative
to understand the potential ramifications of adopting an
architectural solution.

Verification and
validation

Ensures that the three perspectives describing the
architectural solution are consistent with the evolving
architectural definition. The three perspectives include
the product requirements and functional and physical
architectures.

Control Ensures that architectural design decisions and authorized
changes are consistently assimilated throughout the
product configuration documentation and project plans.
Provides stability for the artifacts of the engineering activities
to ensure that they are properly stowed within a controlled
library for record-keeping purposes.

115﻿Software Engineering Practices

The systems engineering practices provide the mechanisms for investigating
architectural design problems and establishing an effective, efficient architectural
solution. These practices are applied at every level of design, or product decompo-
sition, to ensure that the problem space is fully comprehended and that the solution
addresses all potential operational situations that could arise.

These software engineering practices have been adapted to support the engi-
neering of software products. They have been defined in terms of the various
software engineering tasks that should be performed to fulfill the intent of each
practice. These tasks have been composed using a set of software-specific func-
tional and structural elements that permit readers to understand where in the prod-
uct decomposition the task applies.

Within the functional architecture there is a distinction made between functional
components and units. Functional components represent complex data process-
ing actions that should be further examined to reveal the subcomponents or units
that are necessary to support the functional component. Naturally, there are sev-
eral (more than two or three) levels of functional components necessary to describe
even moderately complex software behaviors. Functional units represent noncom-
plex functions that do not require further decomposition.

Within the physical architecture there are three distinct tiers in which emergent
structural elements are discussed. At the topmost tier the conceptual components
are identified to represent placeholders for large software product design segments.
The bottommost tier involves the fundamental structural units that are derived from
functional units as the basic building blocks for the physical architecture. One level
above structural units are the fundamental structural components that form logical
or operational groupings of units that contribute to achieving a common data pro-
cessing function. The design chasm between the fundamental and the conceptual
structural elements is populated with integrating components of which the purpose
is to facilitate the software integration and test strategy.

Requirements must be specified for every element of the software architecture.
Therefore, the requirements analysis practice must be rationally applied for each
functional and structural element of the architecture. The requirements analysis
practice, as a whole, should be applied to assist the exploration of each level of func-
tional decomposition to ensure that the problem/solution space is comprehended.

The software analysis practice should be employed whenever there are multiple
possible tactics by which requirements may be specified, complex data processing
functions can be decomposed, or structural elements can be arranged or integrated.

Software verification and validation should be performed periodically to ensure
that the evolving software architecture is coherently delineated. This involves ver-
ifying that the three architectural perspectives are aligned and consistently stipu-
lated. Validation involves ensuring that the complete structural configuration has
been properly engineered to satisfy the software specifications.

Software control provides a variety of tasks that capture completed architectural
artifacts and maintain control over the evolving architectural documentation. This
includes the processing of change requests and proposals and the updates to techni-
cal plans, schedules, and work packages.

116 SECTION 2 ﻿  Software Engineering Practices

Several additional chapters are included to provide detailed commentary concern-
ing the development of the three architectural perspectives. Chapters 7, 9, 10, and
12 are for informational purposes and should not be considered definitive or conclu-
sive portrayals of the practice to which they pertain. These chapters are provided to
assist readers in gaining an appreciation for each software engineering practice and
its application.

Developing the software product architecture
The software engineering practices provide a set of tasks for translating stakeholder
needs into a complete, consistent, and effective software product architecture.
A fundamental flaw emerges when the practices are applied as sequential steps
in the establishment of the architecture. These practices should not be interpreted
to imply that the architecture is formulated by first establishing the requirements
baseline, then the functional architecture, and lastly the physical architecture. This
sequence implies a waterfall approach that inhibits proper exploration of the prob-
lem/solution space. The primary practices of software requirements analysis, func-
tional analysis and allocation, software design synthesis, and software analysis
provide the basis for deriving an integrated architectural solution in a manner that
is aligned with stakeholder needs and expectations, as well as project resource con-
straints, technology readiness, and staff proficiency.

There are several conceptual approaches to evolving the software product archi-
tecture that must be considered when planning the software engineering effort. This
involves how the software engineering practices will be applied to result in the
architecture. Most software methodologies fail to provide for the iterative nature of
the design process. Therefore, early architectural design decisions are assumed to
be final and are never revisited, even when they impose risks to achieving project
objectives. Popular software development methodologies (e.g., iterative, incremen-
tal, and agile) have been embraced due to the inability of the software development
team to grasp a complete architectural solution. Regardless of the methodology
chosen, every software development project will derive enormous benefits from the
proper application of software engineering and establishing a durable architectural
foundation for a software product.

Software architectural approaches
Every architecture can be viewed as a series of progressively detailed descriptions
of the software product. The layers of the architecture provide a means of compart-
mentalizing aspects of the overall problem/solution space. This concept has been
described as peeling the onion, in which a layer of the architecture is considered
before diving below the surface to the next layer of detail. This provides a reasona-
ble approach for describing the resulting architecture to stakeholders by introducing
them to the architectural solution incrementally. For example, a book is composed of

117Developing the software product architecture

chapters; chapters are comprised of sections; sections are comprised of paragraphs;
paragraphs are comprised of sentences; and sentences are constructed from words.
The book is meant to tell a story with each chapter providing a basis for the follow-
on chapter in which the story progresses toward its conclusion. Reading ahead to see
how the story ends causes readers to miss many of the valuable aspects of the tale
that are intended to make the story more complete, satisfying, and enduring.

Developing a software architecture establishes a structural foundation for the soft-
ware product. Every element of the architecture fulfills a purpose and its reason for
existing defensible; otherwise, it should not be included in the solution. The purpose
for each element of the structural configuration or physical architecture must be trace-
able to an element of the functional architecture, a specified software requirement,
and a stakeholder need. However, this does not mandate that the architectural solution
be devised in a layered approach. Additionally, if the software architecture is permit-
ted to evolve incrementally or iteratively, the stability and durability of the software
architecture may erode over time as new features or enhancements are incorporated.
Therefore, the initial software architecture must be derived in a manner that accom-
modates the software requirements intended for the first release of the software prod-
uct while establishing the foundation for product evolution and future extensions.

It may be prudent to adopt an architectural development strategy that is driven
by critical-path or risk-reduction analysis. Critical-path analysis recognizes that the
software product must be designed to enable one or more essential or crucial data
processing operations. This approach establishes the data processing scenarios,
behaviors, and structural elements necessary to enable the most important data pro-
cessing objectives. The secondary or less important data processing objectives are
then integrated into the architectural configuration in a manner that is most effi-
cient, effective, and pragmatic. Risk-reduction analysis focuses the establishment of
an architectural configuration around the data processing operations that resolve the
most challenging aspects of the solution. This provides an initial emphasis on tackling
the most difficult and precarious design endeavors to establish a feasible technical
solution. The remainder of the functional and structural elements can then be inte-
grated into the architectural configuration in a manner that is efficient, effective, and
pragmatic. Both of these approaches explore a limited architectural solution in depth
to establish an underlying architectural framework for the entire software product.

Iterative software engineering application
The software engineering practices provide a strategic manner of problem solv-
ing analogous to systems thinking.1 Each software engineering practice provides

1 Systems thinking has been defined as an approach to problem solving, by viewing problems as part
of an overall system, rather than reacting to specific parts, outcomes, or events, and potentially con-
tributing to further development of unintended consequences. Systems thinking is not one thing but
a set of habits or practices within a framework that are based on the belief that the component parts
of a system can best be understood in the context of relationships with each other and with other sys-
tems, rather than in isolation. See http://en.wikipedia.org/wiki/Systems_thinking.

http://en.wikipedia.org/wiki/Systems_thinking

118 SECTION 2 ﻿  Software Engineering Practices

a distinct, unavoidable, and compelling perspective of the problem being solved
and available solutions. Therefore, these practices should not be employed in isola-
tion to one another as a set of sequential tasks. Viewed in operation, each practice
can lead to two or more of the related practices. A practice can be interrupted to
facilitate an excursion into another practice, as needed, to clarify some aspect of
the problem being explored or solution being investigated. Each iteration returns to
the interrupted practice with additional information upon which further analysis or
synthesis can be performed. Assumptions can be tested and confirmed while faulty
speculation marginalized. This iteration provides clarity for the software engineer-
ing team about the problem space that results in a more effective and efficient archi-
tectural solution. It provides a level of comprehension that facilitates creativity,
ingenuity, and resourcefulness. This results in a solution that is operationally suit-
able, resource efficient, unfaltering, and structurally enduring.

Most software development methodologies struggle with the concept of
iteration. They emphasize the need to follow a structured approach in which the
requirements are established before the design solution is derived. This encour-
ages a typical requirements, design, code, and test strategy. However, it must be
recognized that the requirements for a software product must be achievable. The
preferred manner in which to ensure requirements feasibility is to venture into the
realm of design, even prototyping, to ensure that each specified requirement can
be satisfied. As the overall software development situation is appraised, there is an
intriguing dynamic of opposing forces that mandates an iterative approach to any
engineering problem. Interactions by the technical team with stakeholders warrants
an evolutionary disclosure of the broadening understanding of the software opera-
tional boundaries, product characteristics, and performance challenges, and the
underlying structural components upon which the solution will be founded. This
is referred to as the top-down or structural analysis approach to software develop-
ment. The instinctive reaction of most programmers is to “prototype” a solution
and socialize it among the stakeholders. This is referred to as the rapid applica-
tion development or agile approach to software development. Neither approach has
emerged with an irrefutable record of success, and the software development indus-
try remains stymied by its futile attempts to establish a credible approach upon
which to forge an engineering discipline.

The software engineering practices that are prescribed in this section establish
an iterative paradigm that accommodates the dynamic forces encountered during
software development efforts. These underlying forces involve the need to:

1.	 Establish a feasible set of software requirements.
2.	 Establish a solid structural foundation for software implementation.
3.	 Incrementally expose the emerging solution with stakeholders to ensure con-

tinual consensus.
4.	 Ensure that the resulting product can be delivered according to project or con-

tractual provisions.

As the software engineering team endeavors to associate the solution with its
driving requirements, there arises a disconcerting dilemma that must be appreciated

119Developing the software product architecture

to devise a unified product solution. The manner by which an engineering solution
must be fostered involves a concurrent refinement of a solution in both a top-down
and bottom-up manner. The top-down architectural conception provides a continual
unraveling of the problem space as expressed by stakeholder needs and software
requirements. The bottom-up fulfillment clarifies the needed building material from
which a product can be assembled. Bridging these two coalescing perspectives
involves a dualistic impetus to translate data processing threads of behavior and
provide a strategy for software component integration.

This dualistic imperative leads to a software design chasm that will be further
examined in Chapter 12. The software product architecture matures in a top-down,
conceptual manner while striving to be definitive in the identification and specifica-
tion of structural elements in a bottom-up manner. The smallest structural parts or
units represent the building-block material from which the software product will
be implemented. Each structural unit must be precisely specified so that the soft-
ware implementation team may perform programmatic design, coding, and testing
of each software unit against the structural unit’s specification. The design chasm
naturally forms as the gulf of space between the upper layers of conceptual compo-
nents and the lower layers of structural elements. The design chasm can be bridged
by further top-down functional decomposition, by determining a bottom-up soft-
ware integration strategy, or by working in both directions.

Therefore, the software engineering practices are not individual steps in a pro-
cess by which the software product architecture is generated. They are elements
of a single, inclusive problem investigation and design discovery paradigm config-
ured to address the myriad of potential software architectural pitfalls. Because of
the vast array of potential architectural anomalies and inconsistencies, it is impos-
sible to establish an unequivocal description of each software engineering practice.
Therefore, it should be recognized that the software engineering practices presented
in this section are defined with an emphasis on presenting a 90% complete and sat-
isfactory set of software engineering practices.

This page intentionally left blank

121Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00007-0

Understanding Software
Requirements 7

CHAPTER

CHAPTER OUTLINE

7.1  Step 1: Soliciting stakeholder needs and expectations.. 124
7.2  Step 2: Requirement analysis and specification.. 127

7.2.1  Balancing and deconflicting stakeholder needs..................................129
7.2.2  Maintaining the scope of the project...129

7.2.2.1  Cost associated with implementing the complete set of
software requirements.. 130

7.2.2.2  Cost associated with testing the software product....................... 131
7.2.2.3  Cost associated with defining and establishing the

post-development processes.. 131
7.2.2.4  Software development timeline and task dependencies.............. 131

7.2.3  The availability of experienced software personnel..............................132
7.3  Step 3: Task definition and scheduling... 132
7.4  Step 4: Resource identification, estimation, and allocation.................................. 133
7.5  Step 5: Establish organizational work packages.. 133
7.6  Step 6: Technical planning.. 133
7.7  Step 7: Project planning.. 134
7.8  Exploring stakeholder needs.. 135

Software development projects are confronted with the challenge of satisfying mul-
tiple stakeholders, each of whom assert a biased perspective affecting the design
of the software product. Each stakeholder represents an important aspect or role
associated with the software product, such as product performance, testing, appre-
ciation for software implementation, product support, and user training. Each class
of stakeholder views their concerns and expectations associated with the software
product as significant features or characteristics that must be incorporated into the
software requirements.

Each stakeholder champions different and often competing objectives, opin-
ions, and expectations that must be addressed by the software engineering inte-
grated product team (SWE-IPT) during the definition of software requirements.
This diverse set of interests creates design challenges that necessitate the conduct

http://dx.doi.org/10.1016/B978-0-12-407768-3.00007-0

122 CHAPTER 7  Understanding Software Requirements

of trade-off studies to resolve. Table 7.1 identifies the objectives and motivations of
each class of stakeholder. The primary objectives of the SWE-IPT are to:

1.	 Solicit stakeholder needs and expectations.
2.	 Specify the software requirements for the product and post-development

processes.
3.	 Generate the integrated technical plans for accomplishing the software develop-

ment effort.
4.	 Translate stakeholder requirements into a complete, specified architectural

description.
5.	 Ensure that the software technical data package is sufficiently detailed to facili-

tate an efficient and effective software implementation.
6.	 Monitor the progress of development efforts and the establishment of post-

development processes.
7.	 Assess the impact of proposed changes to the software product to ensure that

the change can be accommodated within available project resources.

The majority of these objectives involve software requirements. Software require-
ments must address the complete scope of the development effort, including the
computing environment, software product and its interfaces, and post-development
processes. Technical plans are derived from the software requirements, and the pro-
gress of the project team toward achieving project objectives is measured against
the technical plans. Change proposals directly involve new or modifications to the
requirement baseline that can be suggested by any stakeholder. Change requests
affect the software product design that is expressed by the product architecture. This
architecture is derived from the software requirements and is specified by the soft-
ware data package. Solicitation of stakeholder needs and expectations is necessary
to understand the software product’s purpose, functions, features, and performance
characteristics that determine the project scope and software requirements.

The objective of most interest, and thereby warrants further elaboration, con-
cerns the software technical data package. The technical data package is the col-
lection of technical drawings, diagrams, and specifications that is provided to the
software implementation team to guide the programmatic design, coding, integra-
tion, and testing of the software product. Software implementation represents the
construction or manufacturing activity in the housing or system development indus-
tries. The building architect generates a set of engineering plans and drawings that
provides the details necessary for the construction team to build a house, building,
bridge, or other structure. This includes a bill of material that identifies the types
and quantities of building materials necessary to execute the architectural plans.
In manufacturing, the engineering drawings or schematics are provided to the pro-
duction team that fabricates, assembles, integrates, and tests products to ensure
compliance with the schematics. The software technical data package includes
the architectural specifications, drawings, and diagrams necessary for the software
product to be implemented. This includes a software bill of material that iden-
tifies and specifies every structural unit to be designed, coded, and tested during

123Understanding Software Requirements

Table 7.1  Stakeholder Objectives and Motivations

Stakeholder Objectives Motivations

Customer ●	 Effective and efficient
software application

●	 Procurement cost
●	 Delivery schedule
●	 Operational costs

●	 Extensiveness of the application
functionality

●	 Execution performance and
responsiveness

●	 Computer environment resource
utilization

End user ●	 Ease of use
●	 Product learning curve
●	 Responsive product

support

●	 Intuitive user interaction
●	 Appealing, innovative user

interface
●	 Effective training and user

documentation
●	 Customer support
●	 Problem resolution and

rectification
Enterprise
management

●	 Customer satisfaction
●	 Industry reputation and

market growth
●	 Project return-on-

investment

●	 Project progress and status
●	 Risks to successful project

completion
●	 Project cost accumulation and

escalation
Project
management

●	 Achievement of project
objectives

●	 Predictable work
estimates

●	 Project scope preservation

●	 Project planning
●	 Cost and schedule reserves

Software
implementation

●	 Ease of implementation
●	 Product acceptability
●	 Product quality

●	 Product complexity
●	 Changing product requirements
●	 Specification completeness and

accuracy
Software
test and
evaluation

●	 Product acceptance
●	 Product quality

●	 Unambiguous specifications
●	 Test environment, tools, and

procedures
●	 Computing environment and

multi-user load tolerance
Post-
development
processes

●	 Distribution process
readiness

●	 Training program and aids
readiness

●	 Support process
readiness

●	 Product packaging and
distribution

●	 Reseller agreements
●	 Executable file replication
●	 Training material
●	 Problem reporting and resolution
●	 Customer support
●	 Software product enhancements

and extensions
●	 Product registration

124 CHAPTER 7  Understanding Software Requirements

implementation. In addition, it provides the software integration strategy, which
depicts how the structural units and components should be assembled, integrated,
and tested until an integrated software product configuration is realized.

Stakeholder needs and expectations must be accumulated, deconflicted, harmo-
nized, and prioritized. The resulting set of needs must be pruned to balance the work
forecasted necessary to satisfy the needs with the scope of resources available to the
software development project. Once the software requirements are agreed upon, the set
of software specifications should be baselined and placed under configuration control.

The software requirements provide the basis for refining and elaborating the
technical work plans. The SWE-IPT utilizes software engineering principles and
practices to conceive the technical plans for the software development project.
Technical planning begins with the identification of tasks, task dependencies,
and interrelationships to identify workflows and the requisite results of each task
and workflow. The roles of each of the technical organizations must be identified and
the resource requirements determined. These task definitions and resource require-
ments are coalesced into work packages and aligned within the project timeline.
Task-based work packages are combined into larger elements of work (activities)
and organized into the technical work breakdown structure (WBS). The WBS is
completed by adding the project management and other nontechnical work pack-
ages to represent the total work to be performed and the respective budget and
schedule information. The WBS provides the details necessary to prepare techni-
cal and project plans, such as the software engineering plan, integrated master plan
(IMP), integrated master schedule (IMS), and project plan.

Establishing software requirements specifications and technical and project plans
requires a rigorous, disciplined approach that involves trade-off analysis (technical),
cost-benefit analysis (management), and risk assessments to ensure that the require-
ment specifications are complete and can be achieved by the resulting plans, sched-
ules, and resource budgets. The identification and determination of the scope of each
task must reflect the effort to define, design, and implement the software functionality
and features specified by the software requirements. Figure 7.1 depicts how the soft-
ware requirements are established and reflected in technical and project plans. The
following sections describe each step of this workflow that translates stakeholder
needs into requirement specifications and realistic technical and project plans.

7.1  �Step 1: Soliciting stakeholder needs and
expectations

The stakeholder needs and expectations are collected, analyzed, and deconflicted
to generate the software requirements specifications. The various stakeholders
will express their needs utilizing operational or business process terms or expres-
sions relating to their particular field or expertise. Each of the stakeholders provides
a different perspective as it relates to the desired software product. It is necessary
to collect, analyze, and prioritize the stakeholder needs to develop the software

1257.1  Step 1: Soliciting stakeholder needs and expectations

requirement specifications. The prioritization of stakeholder needs should be driven
by the relative importance of each stakeholder class and the significance of each need
as they relate to product acceptance. In general, Table 7.2 provides a relative prioriti-
zation scale for the stakeholders involved in a typical software development effort.

Step 1 - Stakeholder Needs
and Expectations

• Project Goal and Objectives
• Agreements or Contracts
• Policies and Procedures

Business Management

• Integrated Master Plan (IMP)

• Integrated Master Schedule (IMS)

• Work Breakdown Structure (WBS)

• Risk Management Plan

• Risk Mitigation Plans

• Project Budget Allocations

• Cost Management Plan

• S/W Engineering Plan

• S/W Implementation Plan

• S/W Test and Evaluation Plan

• S/W Post-development Process
 Implementation Plan

• Personnel Assignments

• Work Estimation

• Resource Requirements

• Task Scheduling

• Cost Allocation and Budgeting

• Software Engineering Tasks

• Software Implementation Tasks

• Software Test and Evaluation Tasks

• Post-development Sustainment Tasks

• Task Dependencies

• Task Risks and Uncertainty

• Contingency Planning

• Work flows

Organizational
Work Packages

Step 5 - Technical Planning Step 4 - Resource Allocation

• Project Planning
• Project Tracking and Status
 Reporting
• Cost Reporting and Control

Project Management

Customers

End Users

Software Implementation

Software Test and Evaluation

Post-development Software
Sustainment

Step 6 - Project Planning

Step 2 - Requirements Analysis and Specification Step 3 - Task Definition and Scheduling

Software Product
Requirment

Specification(s)

Software Interface
Specification(s)

Post-development
Process

Specification

• Requirements Analysis
 • Deconfliction
 • Harmoization
 • Specification

• Functional Analysis and Allocation
 • Product Functional Specification
 • Task Identification

• Design Synthesis
 • Product Configuration
 • Component Integration Strategy
 • TaskIdentification and Refinement

• Software Analysis
 • Trade-off Analysis
 • Risk Assessments
 • Project Objective Realization

• Software Control, Verification and
 Validation
 • Architecture Completeness
 • Artifact Consistency
 • Requirements Traceability

Software Engineering IPT

FIGURE 7.1

Establishment of software specifications and project plans.

Table 7.2  Priority of Stakeholder Needs

Priority Stakeholder Needs

Essential ●	 Enterprise management
●	 Customer

Very important ●	 Project management
●	 End user

Important ●	 Software implementation
●	 Software test and evaluation

Significant ●	 Post-development processes
●	 Distribution
●	 Training
●	 Product sustainment

126 CHAPTER 7  Understanding Software Requirements

It is important to note that the role of software engineering is not included in
the list of stakeholders. The SWE-IPT is responsible for establishing the software
requirements and product architecture that guide the development of the software
product and post-development processes. Therefore, the SWE-IPT must be impar-
tial in its deliberation, prioritization, and analysis of stakeholder needs. This may
be challenging since the SWE-IPT involves representatives from the various stake-
holder organizations.

Enterprise stakeholders represent the organizational entities that enable and over-
see the software development project for the enterprise. The enterprise provides the
business operational infrastructure (facilities, equipment, etc.), personnel, policies
and procedures, and resources necessary to conduct the project either on its own
behalf or for customers with whom contracts or agreements have been established.
The business management team is concerned with the continued growth of the enter-
prise, its reputation within its industry, and profitability of projects or the software
product within a competitive marketplace. The business management team is mostly
concerned with the success of the project, and monitors its progress toward meet-
ing established goals and objectives. It empowers the project management team with
authority and latitude to direct the software development team toward the achieve-
ment of project directives that best serve the enterprise and its customers or end users.

Customers represent business entities that enter into contractual arrangements
with the software development business. In some situations, the customer may be
an organization within the same business entity as the software development project
organization. In that case, a form of contract referred to as an agreement is estab-
lished between the customer and software development organization since the cus-
tomer’s organization is dependent on the software product for improving business
process efficiency, reducing operating costs, or increasing profitability. The customer’s
needs and expectations must be understood prior to establishment of the terms and
conditions of the contract or agreement under which the software product will be
developed, documented, and delivered. The contract or agreement should establish
the cost, schedule, and operational and performance characteristics the software
product must exhibit upon delivery.

Project management represents the project oversight team empowered to plan,
monitor, and direct the engineering and development of the software product and
associated post-development processes. The project management team acts as the
primary interface with business management, customers, and software engineering
and development organizations. Its focus is on the achievement of project goals and
objectives, project status reporting, customer interactions toward the fulfillment of
the contract or agreements, and the delivery and acceptance of the software prod-
uct by customers, end users, and other stakeholders. The project management team
involves the project planning and control, configuration management and change
control, cost tracking and accounting, risk management teams, and the interface
with contracting and legal organizations.

End users represent customer employees or individuals who will operate the
software product. End users are concerned with the user interface, application

1277.2  Step 2: Requirement analysis and specification

interactions, data storage and retrieval, data analysis, and report generation. Ease
of use, errorless data processing, and intuitive interactions are the primary concerns
of end users. Real-time systems, which control larger systems involving hardware
components, are concerned with systems operations, failure modes, and graceful
degradation of system performance, warning mechanisms, and corrective actions
when system operations encounter adverse conditions.

Software implementation is the organization responsible for translating structural
unit specifications of the physical architecture into software unit designs, coding
and testing these code segments, and conducting software component integration
and testing. It provides representatives to the SWE-IPT to offer insight into the soft-
ware implementation issues and concerns inherent with the evolving architecture.

Software test and evaluation represents the organization responsible for estab-
lishing the software product and post-development process test plans and proce-
dures. It provides representatives to the SWE-IPT to offer insight into the test issues
and concerns inherent with the evolving architecture. It also ensures that software
requirements are properly stated to provide a complete, consistent, and affordable
testing strategy; conducts software dry-run and acceptance testing; and performs
software quality assurance inspections to ensure adherence to software develop-
ment plans, procedures, and guidelines.

Post-development sustainment represents the organizations responsible for defining,
designing, implementing, and qualifying post-development processes. Qualification of
these processes is a test and evaluation exercise that ensures that the processes are suf-
ficient to facilitate anticipated post-development activities in an effective and efficient
manner. These organizations provide representatives to the SWE-IPT to contribute
insight into post-development issues and concerns inherent with the evolving software
product architecture. This organization involves staff members proficient in software
distribution, software training, and software support subject matter.

The various stakeholders have different, often competing interests, needs, and
expectations that must be addressed by the software engineering effort. This diverse
set of interests creates design challenges that might necessitate the conduct of
trade-off analysis to be resolved. Stakeholder needs and expectations must be trans-
lated into a set of requirements for the software product and post-development pro-
cesses. These requirements are documented as one or more specifications against
which the software architecture and testing program will be developed. The require-
ments specifications should not be baselined (placed under configuration control)
until the requirements are nonvolatile and determined to be achievable within pro-
ject cost and schedule objectives.

7.2  Step 2: Requirement analysis and specification
The translation of stakeholder needs into a feasible, effective, and efficient soft-
ware solution involves exploration of the problem space expressed by customers
and evaluation and analysis of potential designs approaches. Only when the design

128 CHAPTER 7  Understanding Software Requirements

solution is sufficiently mature and technical risks eliminated or minimized should
the requirements be specified. This requires the application of software engineer-
ing practices to derive a design solution that balances the various stakeholder needs
against cost and schedule constraints. The general approach to deriving a software
solution involves the following three areas of interest:

1.	 The translation of stakeholder needs and expectations into a software
architecture.

2.	 The specification of a balanced, achievable set of software requirements.
3.	 The incorporation of the solutions into work packages and technical and project

plans and schedules.

Stakeholder needs and expectations must be evaluated, harmonized, and decon-
flicted to ensure that stakeholder expectations are properly established before the
project enters into more detailed engineering activities. Abstract solution bounda-
ries are generated in the form of ideas, considerations, and constraints that restrict
the problem to be solved by design alternatives. Having the problem bounded per-
mits the elaboration of product concepts that address the most important stake-
holder needs and technical challenges. Initial product concepts should address how
the product will operate within a larger business or operational context. The top-
level or predominant functionality and performance challenges should be examined
to gain an appreciation for the extent of the effort necessary to realize a product
solution. An initial physical solution should be prepared that identifies the key
structural components of the software product and attempts to reduce the product
complexity.

The initial product concepts should be assessed against operational scenarios,
project objectives, technical feasibility, and product sustainment concepts. Certain
technical solutions may result in very eloquent and user-satisfying products.
However, the technical challenges confronting software implementation and test-
ing efforts may increase product training or support costs. The product technical
solutions should be as noncomplex as possible to reduce implementation, testing,
and sustainment costs. At this juncture, the product concepts should be assessed in
terms of its total life-cycle costs resulting from the post-development process defi-
nitions. These processes are conceptualized and initial process definitions generated
to support this assessment. Eventually, the initial software architecture should be
specified in terms of the product and process requirements, and the initial func-
tional and physical architectures. The complete software architecture is represented
by the combination of the product and post-development process architectures.

The challenges involved with this initial exploration of the stakeholder needs are:

1.	 Balancing and deconflicting stakeholder needs.
2.	 Maintaining the scope of the project to ensure that project cost and schedule

objectives can be achieved, including the following:
●	 The cost associated with implementing the complete set of software

requirements.

1297.2  Step 2: Requirement analysis and specification

●	 The cost associated with testing the software product based on the assorted
set of operational threads, control mechanisms, and interfaces with external
systems and applications.

●	 The cost associated with defining and establishing the post-development
processes.

●	 The software development timeline and task dependencies necessary to
accomplish each stage of software development.

3.	 Ensuring the availability of experienced software personnel with the technical
skills required to design, code, and test the software product.

7.2.1  Balancing and deconflicting stakeholder needs
Resolving conflicting stakeholder needs so that the software requirements can be
specified, and understanding how each need affects the software architecture, pro-
ject costs and schedule objectives, product complexity, and post-development pro-
cesses. The costs and risks associated with each need must be estimated to provide
a basis for proceeding with generating an achievable set of software requirements.
The stakeholder needs must be prioritized based on the cooperative agreement of
potential costs and risks to project objectives and product viability. This set of pri-
oritized needs, with estimated cost, schedule, and risk information, provides a basis
for resolving conflicts among stakeholders needs, and gaining stakeholder accept-
ance of recommended compromises that form the basis for establishing software
specifications.

Further analysis of prioritized stakeholder needs may involve functional analy-
sis and allocation and design synthesis to gain a better understanding of the ramifi-
cations on the software product, post-development processes, and project cost and
schedule objectives. Trade-off analysis and risk assessments should be performed to
distinguish among the design alternatives and permit design decisions to be made
with more accurate information. This further analysis will provide the supporting
data and rationale that can be used to assist stakeholders to appreciate the impact of
their vague or excessive requests.

7.2.2  Maintaining the scope of the project
The scope of the software development effort must be maintained within the estab-
lished project cost and schedule boundaries. It must be recognized that several
influences will affect project scope and planning, such as:

●	 Ambiguity of stakeholder needs or software requirements that result in misin-
terpretations affecting the scope of the technical effort. Ambiguity occurs when
the personnel assume they understand stakeholder needs and do not scrutinize
each need or requirement with the intent of eliminating statements that may
have more than one possible meaning or interpretation. Software professionals
need the assistance of subject matter experts who are familiar with the business
or operational environment within which the software product is expected to

130 CHAPTER 7  Understanding Software Requirements

function. This expertise will alleviate the ambiguity associated with interpreting
stakeholder needs.

●	 Changing stakeholder needs and expectations as the software development
effort progresses. This represents an evolution associated with the understand-
ing and clarity of stakeholder needs as it affects the software product. Continual
changes in product requirements will impair the ability of the project team to
stabilize the software specifications and progress with software implementation.

●	 Underestimating the scope of effort involved with the incorporation of new or
modification of old software functionality and features. Each change must be
comprehensively examined to address the impact of incorporating the change
into the product architecture, associated documentation, and technical plans.

Every change to project scope will have a varying level of impact on the
planned software development effort. An objective of software engineering is to
prepare the product architecture in a manner that can be implemented and tested
within project cost and schedule parameters. Changes late in the project timeta-
ble, after preliminary design review (PDR) or critical design review (CDR), will
require revisions to the software specifications, software architecture, and test plans
and procedures. Changes to project scope must account for the total project effort
needed to revise the specifications, architecture design documentation, and techni-
cal plans. Otherwise, the project will be challenged to exceed the anticipated work
reflected in the work packages. The act of incorporating changes in scope also
impacts the project by derailing technical progress to address the effort necessary
to adjust the software architecture, reprogram and reallocate resources, and update
project and technical plans to reflect the incorporation of the change.

7.2.2.1 � Cost associated with implementing the complete set of software
requirements

Every software requirement involves a cost and schedule burden that impacts the
planned software development effort. The desired functionality and level of per-
formance must be understood to properly establish the work effort necessary to
satisfy a requirement. The WBS must provide a basis for tracing software require-
ments to project and technical plans. The later a change in scope is considered, the
greater the impact of that change. This is due to the need to reevaluate architectural
impacts, redesign, code, and test existing software units, reintegrate and test soft-
ware components, and accommodate the changes within technical plans and docu-
mentation. This should be recognized as a form of rework necessary to refine an
already generated work product to conform to a new set of conditions.

As a rule of thumb, software requirements should reflect the software product’s
role in business or operational processes. The requirements should be minimal in
number, but sufficiently articulated to ensure that the testing strategy adequately
demonstrates the effectiveness and efficiency of the product performance when sub-
ject to various levels of operational stress. Operational concepts must be translated
into technical terminology to guide the establishment of a complete, efficient, and

1317.2  Step 2: Requirement analysis and specification

noncomplex product architecture. Chapter 8 will provide further guidance on how
an operational model can be utilized to assist in establishing a solid requirements
baseline.

Testing is performed against software requirements specifications and is intended
to demonstrate that the product conforms to the requirements as they are specified. If
the specifications do not accurately capture stakeholder needs and expectations, then
the delivered software product may not provide a value proposition for all stakehold-
ers. To ensure that the software product will satisfy stakeholders, the test strategy,
plans, and procedures should ensure conformance with the operational concepts
through a variety of scenarios and stressful multi-user operational conditions.

7.2.2.2  Cost associated with testing the software product
Identifying the magnitude of the software test and evaluation effort must be
accommodated within the confines of project scope and resources. Testing occurs
throughout the software implementation stage and must emphasize the achievement
of specified performance measures. Functional requirements identify what the soft-
ware must do, while performance measures address how well a function must be
accomplished. Some requirements may be specified that cannot be demonstrated
without special test facilities or equipment. Others may be cost prohibitive to qual-
ify prior to delivery. If a requirement precludes the establishment of a clear or cost-
effective test approach, then the requirement should be highlighted within the test
plan to elevate this situation.

An example of this would be an Internet-based game that permits thousands of
real-time users to interact within a digital world. It may be challenging and cost
prohibitive to conduct performance testing with the anticipated number of users.
Therefore, the approach to assessing the performance of the software product under
extreme conditions must be able to extrapolate and forecast performance measures
utilizing advanced load testing tools and techniques.

7.2.2.3 � Cost associated with defining and establishing the post-
development processes

The integrated product and process development (IPPD) philosophy emphasizes the
need to concurrently accomplish the efforts associated with establishing the post-
development processes. The software product should not be deployed unless the
post-development processes have been defined, designed, implemented, and tested.
These processes provide the infrastructure necessary to distribute the software prod-
uct, train users, and provide customer and software support. The software develop-
ment project should encompass the resources and management oversight necessary
for the formulation of these essential software post-development processes.

7.2.2.4  Software development timeline and task dependencies
The accuracy of project and technical plans, budgets, and schedules involves
management processes that are responsive to changes in project scope and prod-
uct architectural design. Initial plans will never account for the true scope of the

132 CHAPTER 7  Understanding Software Requirements

development effort because the understanding of the stakeholder requirements may
be limited. The purpose of software engineering is to investigate stakeholder needs
and expectations so that a technical solution may be formed. As the software prod-
uct architecture is developed, more insight into the technical work effort is made
available and plans and schedules increase in accuracy. Rather than being driven
by initial planning assumptions, project and technical plans must be continually
revised and updated to reflect the improved information resulting from the software
engineering effort. Design decisions made during the software engineering effort
will require the project team to continually reevaluate plans, work packages, and
risks to reallocate budgets and realign task schedules and dependencies.

7.2.3  The availability of experienced software personnel
The availability of talented, experienced, and trained software professionals is cru-
cial to executing technical plans. Task durations and costs will vary depending on
the level of expertise embodied by the technical staff. Representatives from the
software implementation, test and evaluation, and post-development process organi-
zations must be adequately trained to perform the tasks identified in technical plans.
Additionally, these personnel must be educated concerning the evolving architec-
tural design as it affects their technical duties. Work packages must be established
and revised to account for the availability of software professionals, their combined
skill set, and their familiarity with the nature of the software product, development
methodologies, procedures, and use of automated tools.

The technical and project plans must be revised to accurately reflect the evolving
software requirements and product architecture. As stakeholder needs and expecta-
tions are translated into software requirements and interface and post-development
process specifications, these documents and supporting analysis provide a basis for
refining the scope and effort necessary to perform each development task. Project
plans and management controls must be aligned to reflect the current, most accu-
rate state of the development project. As the software engineering effort progresses,
the analysis that leads to design decisions provides a more realistic estimate of the
scope of each task, resource requirements, skill sets, and level of effort necessary to
perform each task.

7.3  Step 3: Task definition and scheduling
Each requirement must be evaluated by the SWE-IPT to establish organizational
roles, responsibilities, and task definitions. The software engineering practices
should be applied to gain a complete understanding of requirements’ functional
and performance characteristics needed to be satisfied by the software product. The
software implementation and test organizations must utilize this understanding to
reframe the scope of their tasks. Organizational tasks should be evaluated to iden-
tify potential risks and uncertainty associated with task performance. Contingency

1337.6  Step 6: Technical planning

plans should be identified for each risk abatement approach and the conditions that
would warrant their activation must be identified. The dependencies among tasks
must be aligned to establish the criteria for task initiation and provide a view of the
overall workflow and schedules.

7.4  �Step 4: Resource identification, estimation, and
allocation

The resources required to execute each task must be identified in terms of man-
power, facilities, equipment, office supplies, and computer automated software
engineering (CASE) tools. Resources may include any item that contributes to
project costs including travel expenses, reproduction, and software-related skills
training. The costs associated with resources should be allocated among techni-
cal organizations participating in executing the task. Lower-level tasks should be
combined to establish higher-level task cost estimates. This exercise leads to the
identification of budget estimates for organizational and integrated technical work
packages. Work packages can be combined to summarize the cost of performing
each element of the WBS.

Initial work package cost estimates must be reconciled against available project
resources. Task scope and resource requirements may need to be revised to provide
a complete set of work packages consistent with project budget constraints. Work
packages that involve an identified risk should incorporate a contingency reserve
budget based on the magnitude of the risk, its probability of occurring, and the
resources needed to execute the contingency plan of action.

7.5  Step 5: Establish organizational work packages
The WBS is a central project management tool that is tightly coupled with project
plans, budgets, and schedules. Each technical organization should maintain its own
version of the WBS that identifies the organizational task descriptions, resources,
and results. Technical organizations must convert their contribution to tasks execu-
tion into an organizational set of work packages. These organizational work pack-
ages form the basis for organizational and technical planning.

7.6  Step 6: Technical planning
Each technical organization utilizes its WBS to generate or revise organizational
plans and schedules. These plans should identify the organizational role and
responsibilities associated with each work package. Task descriptions, depend-
encies, duration (start and stop dates), resource requirements, expected results,
risks, and contingency plans should be addressed. The SWE-IPT is responsible for

134 CHAPTER 7  Understanding Software Requirements

ensuring that organizational plans are consistent with established project objectives,
budgets, and milestones. An integrated technical plan (ITP) and schedule (ITS)
must be established by combining organizational plans, eliminating duplication of
effort, and preparing integrated work package definitions.

The software engineering plan (SWEP) must be prepared or revised to capture
the detailed tasks for the impending stage of software development. The SWEP
addresses the focus of the SWE-IPT by identifying the approach to developing the
desired results for the stage of development it is addressing. It should identify any
known risks that will be monitored and the contingency plans of action that will be
initiated to redirect planned activities toward an alternate design solution. Plans to
conduct trade studies for identified design challenges should be conveyed, the com-
peting alternatives described, and the selection criteria established.

The primary software engineering activities involve requirements analysis, func-
tional analysis, and application design synthesis. They are supported by software
analysis, control, verification, and validation activities. Software analysis involves
the conduct of risk assessments and trade-off studies, and is applied whenever
deemed necessary. The control, verification, and validation activities will be differ-
ent during each stage of software development as the focus of the effort progresses
from stakeholder needs and expectations to the software architecture, implementa-
tion, and acceptance testing. The SWEP, ITP, ITS, and organizational plans must be
updated to reflect the evolution of the software development effort as it progresses
through each stage.

7.7  Step 7: Project planning
The project management team, with support from the lead software engineer,
should utilize the technical plans to establish or revise the project plans and sched-
ules. Work packages for project management activities, such as project control, cost
tracking, configuration, and data management, should be integrated with technical
work package descriptions. These integrated project work packages are utilized to
establish an IMP and IMS, project-level WBS, and budgets.

This general flow for establishing project plans is intended to ensure that tech-
nical and project plans accurately reflect stakeholder needs, specified software
requirements, and focus on the achievement of project objectives. This approach is
facilitated by a stakeholder requirements analysis activity that explores the problem
area and assesses software design solutions and alternatives. Once a software solu-
tion is recognized, the project, technical, and organizational plans must be revised
to provide an accurate and consistent representation of the work to be performed.
This planning sequence emphasizes the importance of conducting adequate soft-
ware engineering analysis to generate the software requirement specifications that
guide technical and project planning efforts. This is intended to ensure that the soft-
ware development effort is driven by the stakeholder needs and software require-
ments rather than erroneous and inaccurate project plans developed at the onset of
the project.

1357.8  Exploring stakeholder needs

7.8  Exploring stakeholder needs
Establishing detailed technical plans can only be achieved when stakeholder needs
and expectations have been properly translated into an achievable set of software
requirements. Eliciting, harmonizing, and prioritizing stakeholder requirements are
important steps in aligning work plans with project objectives. However, before the
software requirements can be specified, some amount of design conceptualization
and exploration must be performed to ensure that the product can be developed and
delivered within the project resource constraints. The software requirements base-
line represents a binding agreement (sometimes contractual) between the techni-
cal, project management, and stakeholder representatives concerning the product
characteristics and operational effectiveness. To ensure that the project team can
successfully deliver the software product and achieve project cost and schedule
objectives, some amount of effort must be expended to amplify the architectural
concept. Early and continual examination of the software architecture, especially
the areas that are technically challenging or risky, provides the assurances neces-
sary to have confidence that the technical and project plans can be satisfied.

Establishing the software product architecture involves performing several itera-
tions of the software engineering practices. In concept, each of the first three stages
of software development involve performing most of these practices at least once to
produce the requirements specifications and functional and physical architectures.
Figure 7.2 shows how the software engineering practices are applied to generate
the desired results for each stage of development. However, within each stage these

FIGURE 7.2

Conceptual application of software engineering practices.

136 CHAPTER 7  Understanding Software Requirements

practices may be repeated, as necessary, to revise, refine, or elaborate the software
product architecture.

Each of the first three stages of software development is intended to progress
the software architectural definition toward a state of specificity that is sufficient to
guide software implementation. Unfortunately, the titles of these stages are similar
to the titles of the software engineering practices. This similarity has caused confu-
sion. Software development practitioners mistakenly assumed that only the identi-
fied software engineering practice was to be performed during these early stages
of development. However, it is essential for software engineering practices to be
applied, as needed, within each stage of development to eliminate risks or to estab-
lish a design solution.

Historically, the preliminary design stage resulted in an allocation of require-
ments throughout a functional hierarchy. Functional components and units were
inappropriately considered elements of the preliminary design configuration. The
distinction between a functional and physical architecture was not comprehended
since software, as a design medium, resembled functional notations. Software
languages involve statements that resemble mathematical or logical functions.
Early programming languages involved procedures, functions, and subroutines as
their basic structural elements. Therefore, it was easy for software practitioners to
assume that the architectural definition was complete when the functional decom-
position was fully established. However, it must be understood that every product
has a physical configuration. The functional analysis and allocation practice enables
software requirements to be translated into the essential data processing actions the
software product must be able to perform. However, this does not conclude the defi-
nition of the software architecture. The physical configuration must be synthesized
to provide a coherent, noncomplex solution.

Each of the software engineering practices must be utilized whenever its sphere
of influence is implicated by the delineation of the problem/solution space. This
iteration of software engineering practices must always revisit the requirements
analysis activity to revise or refine the software product requirements. For example
(see Figure 7.2), during the detailed architecture definition stage of development,
the requirements analysis practice occurs twice. The first occurrence addresses the
specification of structural units and the second occurrence addresses the specifica-
tion of structural components.

During software requirements definition, there may be stakeholder needs that
necessitate modeling or prototyping efforts to ensure that stakeholder needs are
understood, to investigate design challenges, and to minimize risks to the devel-
opment effort. These analytical tools should be used to ensure that the software
requirements are unambiguously specified. This undertaking must be considered an
excursion into the realm of design for the purpose of clarifying stakeholder needs.
The term excursion is used to emphasize that it represents a departure from the
normal or planned application of software engineering practices. The development
of models or prototypes should be achieved by rapid application of software engi-
neering techniques to establish models or prototypes for the purpose of clarifying

1377.8  Exploring stakeholder needs

software requirements. Models must still exhibit some functionality and perfor-
mance characteristics that enhance the accuracy of requirements specification.
Prototypes will involve a software implementation effort to develop a mock-up of
the prototype design. These models and prototypes must be viewed as tools that
facilitate an enhanced comprehension of the stakeholder needs.

This page intentionally left blank

139Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00008-2

Software Requirements
Analysis Practice 8

CHAPTER

CHAPTER OUTLINE

8.1  Project analysis tasks.. 140
8.1.1  Analyze project goals and objectives...141
8.1.2  Identify development success criteria...142
8.1.3  Solicit stakeholder needs and expectations..142
8.1.4  Prioritize stakeholder needs...144

8.2  Operational analysis tasks.. 144
8.2.1  Identify operational concepts...145
8.2.2  Identify operational scenarios...145
8.2.3  Identify the computing environment characteristics............................146
8.2.4  Identify external interfaces..147

8.3  Product analysis tasks... 147
8.3.1  Identify modes of operation...148
8.3.2  Identify functional behaviors..148
8.3.3  Identify resource utilization needs..150
8.3.4  Identify data processing conditional logic..150
8.3.5  Identify data persistence needs..151
8.3.6  Identify data security needs...151
8.3.7  Identify data storage transactions...152
8.3.8  Identify measures of performance...152

8.4  Sustainment analysis tasks... 152
8.4.1  Identify post-development process operational concepts.....................152
8.4.2  Identify post-development process operational scenarios.....................153
8.4.3  Identify post-development process characteristics..............................153
8.4.4  Identify architectural guidelines and principles..................................154

8.5  Project assessment tasks... 155
8.5.1  Assess requirements sensitivity..155
8.5.2  Identify the software test strategy...155
8.5.3  Assess proposed changes...156
8.5.4  Assess project feasibility..157

8.6  Establish the requirements baseline.. 157

http://dx.doi.org/10.1016/B978-0-12-407768-3.00008-2

140 CHAPTER 8  Software Requirements Analysis Practice

Software requirement analysis is the software engineering practice that, at the top
level of the software architecture, translates stakeholder needs and expectations into a
viable set of software requirements. As the software product architecture is systemat-
ically revealed, these tasks should be selectively applied to specify the requirements
for each element of the architecture. This set of tasks applies to the software prod-
uct (application and computing environment), as well as post-development software
sustainment processes. Software requirements analysis involves a set of analyses and
assessments to examine stakeholder needs and software requirements to comprehend
the implications of each requirement on the scope of the development effort.

The complexity associated with the design solution must be understood before
the requirements are baselined and placed under configuration control. In addition,
requirements analysis must assess the feasibility of satisfying the complete set of
software requirements within program cost and schedule constraints. This can only
be achieved by exploring the solution space for each requirement and correlating the
sensitivity of project variables to various levels of performance. This may necessitate
conducting exploratory architectural investigations (functional analysis and applica-
tion design synthesis) and trade-off analyses to achieve a balanced set of requirements
that can be successfully implemented within program cost and schedule objectives.

This chapter discusses the primary tasks that are involved with software require-
ments analysis given the environment the application is constrained to operate within.
This involves exploration of the operational and sustainment processes to determine
the functional and performance characteristics needed to satisfy the stakeholder of
the software product. The execution of these software requirements analysis tasks
results in the generation of specifications for the software product (computing envi-
ronment, software application, the application interfaces) and the software sustain-
ment processes. These specifications must be informally controlled until the product
design is determined to be sufficiently defined and agreed upon by stakeholders to be
placed under configuration control. The baseline software requirements and interface
specifications form the basis for the software test and evaluation effort. Figure 8.1
depicts the tasks that contribute to software requirements analysis.

These tasks have been classified to emphasize the area of investigation each task
addresses. These categories include project, operational, product, and post-development
process analyses, and project assessment. The analytical tasks are intended to examine
the software product to understand it in the context of its project, operational, and sus-
tainment environments. Project assessment tasks are performed on preliminary require-
ments to understand the feasibility of achieving project objectives if the requirements
are to be endorsed, baselined, and placed under project configuration control.

8.1  Project analysis tasks
The project analysis tasks involve gathering the information concerning the product
to be developed to establish the criteria for product and project success. The speci-
fication of software requirements must be accomplished in a manner that keeps the
project scope capable of being successfully executed.

1418.1  Project analysis tasks

8.1.1  Analyze project goals and objectives
Every software development project is established with a set of goals and objec-
tives that guide the project team’s efforts. Initial project goals and objectives are
purposefully abstract and grandiose in nature given the lack of clarity associated

FIGURE 8.1

Software requirements analysis tasks.

142 CHAPTER 8  Software Requirements Analysis Practice

with the final product. As the development effort progresses, the development team
gains a better understanding, appreciation, and interpretation of the stakeholder’s
business or operational challenges. This comprehension must be used to enhance
project goals and objectives, as well as to properly specify the software product
requirements.

Project goals must be stated in a manner that focuses the project team’s atten-
tion on project outcomes. Goals will shape the organizational formation and plans
so that every task contributes in some manner to goal attainment. Goals must be
measurable and address an accomplishment to be achieved, the results of the action,
and the project milestones associated with the action. Software development goals
should address project and enterprise expectations with the endeavor. Objectives
address the purpose of the project in terms of the benefits to be derived by executing
the development effort. Success factors should address the essential areas of activity
that must be performed well if the project is to achieve its objectives or goals.

8.1.2  Identify development success criteria
Software development success criteria must be established for each success factor.
These criteria must identify how the satisfaction of a success factor will be meas-
ured or realized. The success criteria establish the indicators by which the project
will be judged to have been successful in the eyes of the stakeholders. Project-
oriented success criteria should address the critical project management events that
demonstrate that the project is being managed and controlled properly. Results-
oriented success criteria address the outcomes or results to be attained as a conse-
quence of executing the project. Success criteria must be monitored to be able to
determine whether a project has delivered the expected benefits to stakeholders.

8.1.3  Solicit stakeholder needs and expectations
Understanding customer needs and expectations is central to developing a solu-
tion that will be acceptable when delivered. History is wrought with flawed soft-
ware development programs that were delivered late, exceeded program cost
constraints, or were rejected by the customer when the system was finally deliv-
ered. Requirements creep—the continual changing and addition of requirements—
is a major dilemma confronting programs. Software development managers fail to
restrain the customer from attempting to continually change or add requirements
throughout development. It must be recognized that each requirement implies an
expense to the development effort, including driving up test costs and impacting the
delivery schedule.

Fundamentally, customers do not have requirements, they have needs and
expectations. When faced with the cost associated with a new requirement, cus-
tomers will often change their stated needs or drop the requirement altogether.
The greatest challenge a software development manager will face is establishing

1438.1  Project analysis tasks

a requirements baseline and not allowing it to change. As the software engineer-
ing process is executed, derived requirements will emerge that affect the ability of
the development effort to deliver the solution on time and within budget. Allowing
requirements to be changed or added to the effort will only make this situation
worse. If a requirement is to be changed, then it should be modified in a manner
that simplifies the development work effort by reducing or eliminating risks to the
program.

Customer needs and expectations must be captured as the source of the require-
ments that will be specified for the computational environment and software appli-
cation. Every effort should be made to minimize the number of customer needs and
expectations by capturing them in terms of how the solution is expected to oper-
ate or support the customer’s business processes. Customer expectations should not
imply a design constraint on the solution, but should address the way in which data
will be accessed and processed.

Software development projects are typically established within an enterprise
organization. The enterprise represents a business entity, government, or social
organization that operates for stated business purposes. All enterprises have policies
and fiscal responsibilities. Development programs that do not perform as expected
impact the enterprises’ financial stability. When a program is established, the enter-
prise establishes cost and schedule objectives that constrain what can be achieved
and delivered by the software development program. In addition, policies may dic-
tate the conduct of technical reviews, quality programs, use of technologies, etc., all
of which affect the development effort and the final solution.

Enterprise and program constraints must be captured since they will form the
basis for governing the software development effort. Constraints affect the solution
space and burden the development effort by restricting design alternatives. The use
of standards, computer-aided software engineering (CASE) tools, networks, and
even computer languages will impact the development effort and affect cost and
schedule. These constraints must be captured as an additional source of stakeholder
requirements. This recognizes the enterprise and program management team as
additional customers who have expectations of their own and are stakeholders in
the software development program’s success.

External constraints are implied by laws, regulations, or industry policies asso-
ciated with the problem being solved by the development program. External con-
straints affect the solution space and must be complied with for the design solution
to be politically and socially sound. It is important to identify all possible con-
straints to the program that will affect the design solution before the requirements
are baselined. External constraints are a type of requirement that cannot be deviated
from, where software requirements can be changed or negotiated among the soft-
ware development team, enterprise, and customer.

An example of an external constraint is the public law requiring that the
video game industry rate the content of each game in terms of recommended age
restrictions based on bloodshed, violence, and sexual content. The Entertainment

144 CHAPTER 8  Software Requirements Analysis Practice

Software Rating Board (ESRB) policies are designed to provide accurate and
objective information about the content in computer and video games so parents
can make an informed purchase decision.1

As the game industry’s self-regulatory body, ESRB is responsible for the
enforcement of its rating system. Every publisher of a game rated by the ESRB
is legally bound to disclose all pertinent content when submitting the game for an
ESRB rating. After a game is publicly released, ESRB testers review the final prod-
uct to ensure that all pertinent content was fully disclosed. In the event that material
that would have affected the assignment of a rating or content descriptor is found to
have not been disclosed, the ESRB is empowered to compel corrective actions and
impose a wide range of sanctions, including monetary fines. Corrective actions can
include pulling advertising until ratings information can be corrected, restickering
packaging with correct ratings information, or recalling the product.

This constraint requires the developers of software games to include a task
for obtaining the ESRB rating prior to release of the video game to the market. It
requires that the software packaging must clearly display the ratings in accordance
with ESRB guidelines. This may affect the release date of the product and must
be accounted for in the software development project plan and schedule. In addi-
tion, the rating system can have an effect on the design of the game, in terms of the
intended audience and the associated content included in the game.

8.1.4  Prioritize stakeholder needs
The project team must condense, prioritize, and summarize the list of stakeholder
needs into a manageable collection that will be used to guide the specification of
software requirements. Stakeholder needs and expectations must be translated
into software requirements for the product (computing environment and software
application) and post-development processes. An individual stakeholder need may
involve several requirements that the project will be held accountable for achiev-
ing. The level of effort and resources necessary to fulfill a stakeholder need must
be determined, and the project and technical risks must be included in the cost esti-
mates. The project budget can then be allocated against the prioritized needs. This
establishes the initial scope of the software development effort and provides the
basis for project and technical planning.

8.2  Operational analysis tasks
The operational analysis tasks involve gathering the detailed information regarding
the business or operational processes the software product is intended to facilitate.
Characteristics of the business or operational processes should be traced to stake-
holder needs. The operational environment should be identified in terms of the

1 See Entertainment Software Rating Board, http://www.esrb.org/.

http://www.esrb.org/

1458.2  Operational analysis tasks

facilities, systems, equipment, data networks, etc. within which the software prod-
uct will execute. This operational analysis should be described from the perspective
of the software product and address its role, functions, and interactions with exter-
nal systems, personnel, and resource providers (e.g., power, data sources).

During the architecture definition phases, the operational model is elaborated to
address the behaviors of the software product within the operational environment.
Extension of the operational model is addressed in Chapter 11.

8.2.1  Identify operational concepts
The operational concept for the software product must be documented to describe
the characteristics of a proposed software product from the viewpoint of an individ-
ual who will use the product. It is used to communicate the software characteristics
to all stakeholders. Concepts of operation descriptions usually address the following:

1.	 Statement of the goals and objectives of the software product.
2.	 Mission statement that expresses the set of services the product provides.
3.	 Strategies, policies, and constraints affecting the product.
4.	 Organizations, activities, and interactions among participants and stakeholders.
5.	 Clear statement of responsibilities associated with product development and

sustainment.
6.	 Process identification for distributing, training, and sustainment of the product.
7.	 Milestone decision definitions and authorities.

During software requirements definition, the operational or business process should
be modeled to understand the operational activity flows, control flows, and data flows
among the elements of the computational environment, associated applications, data-
bases, and users. The operational concept should identify operational threads for each
type of transaction that the software application will have to support.

During architecture definition, the operational concepts should address the user
interactions associated with installation, operation, distribution, training, and sup-
port of the product.

8.2.2  Identify operational scenarios
The operational concept should be expanded to identify the range of the anticipated
uses of the software application in terms of operating scenarios. For each operational
scenario, the expected interactions with other systems, products, or users should be
defined. The business rules for each transaction should be captured and expressed as
control decision logic. In addition, each operational scenario should address the pos-
sible situations that may prevent a transaction from being completed successfully, and
identify the need for transaction rollback procedures. (Note: This represents a derived
requirement that may not have been addressed in the original set of requirements.)

Troubleshooting diagnostics threads should be identified given that most computer-
ized systems have some form of automated diagnostics. These troubleshooting threads

146 CHAPTER 8  Software Requirements Analysis Practice

should identify the actions that will be taken by the application when failures occur
that inhibit specific types of transactions, or when the system is completely degraded.

The measures of effectiveness must be identified for the overall performance of the
software solution (combination of the software product and computing environment)
in achieving operational objectives. Measures of effectiveness define the desired effec-
tiveness of the solution in terms of its ability to perform its mission as expressed by
the operational scenarios. Operational effectiveness is the overall ability of a software
solution to achieve mission success considering the total operational environment.2

The measures of effectiveness should be specified with a minimally acceptable
level (threshold) and desired goal (objective). This provides the range of desired
performance against which the computational environment and application can be
designed. Figure 8.2 identifies the elements of an effectiveness measure. For an
automobile, a measure of effectiveness can be: “The automobile should provide
36 miles per gallon during highway driving.” This statement may seem simple, but
there are several design factors that affect the achievement of this design goal. The
weight, horsepower, fuel efficiency, and drag are some of the design considerations
that would have to be managed to achieve the desired measure of effectiveness.

8.2.3  Identify the computing environment characteristics
The computing environment must be identified to establish the scope of the soft-
ware product’s capacity to operate in a networked, collaborative, or multi-user

FIGURE 8.2

Elements of a well-defined measure of effectiveness.

2 (2001). Systems Engineering Fundamentals. Defense Acquisition University Press.

1478.3  Product analysis tasks

environment. Computing environment characteristics should address computing
mainframes, servers, workstations, data storage devices, plotters, operating sys-
tems, and other application software, such as database management systems. This
information is needed as the basis for the definition of the computing development
that must be instantiated to support software testing.

It is necessary to identify the computational boundary that may include local,
wide area, wireless, and telecommunication networks. Establishing the computa-
tional boundary is used to understand how the software product needs to interact with
the various elements of the computational environment and other external systems.
In the case of an embedded software product, the boundary could be the system it
operates within. However, if the system is part of a larger “system of systems,” then
the computational boundary could be extended beyond the system boundary to other
systems, which would indicate the need for external interfaces.

8.2.4  Identify external interfaces
The interfaces to external systems must be identified and the requirements associ-
ated with each interface need to be specified. External systems are those systems
not being developed as part of the program, but they need to exchange data with
the software product being developed. Interface specifications should address not
only the physical means of data transfer, but also specify the message formats, data
types, units of measures, and precision associated with each data type.

The operational model should be analyzed to specify each of the human–
machine interactions for operational, support, and diagnostic actions. In addition,
the human–machine interface requirements should address how the application
must detect and deal with improper or incorrect manual data inputs. The means
of the manual interactions and the interfacing devices, such as keyboard, mouse,
touch screen, and card reader, should be identified. The human–machine interface
requirements should also address data displayed to the user and the types of output
reports that must be generated by the software product.

8.3  Product analysis tasks
The product analysis tasks involve specifying the software product requirements
given its role within the operational concepts. The operational concepts and scenar-
ios should be evaluated to identify the functional and performance characteristics
associated with the data processing actions that the software product must exhibit.
Details concerning the elements that need to be expressed by an operational model
are discussed in task 8.3.2, identify functional behaviors (see Figure 8.1).

During architecture definition, the product requirements will be decomposed
and allocated to functional and structural units and components. These tasks should
be selectively performed to specify the requirements for each element of the soft-
ware product architecture.

148 CHAPTER 8  Software Requirements Analysis Practice

8.3.1  Identify modes of operation
Most applications must be designed to operate in different modes that address nor-
mal, degraded, maintenance, and training modes. The operational model should be
evaluated to identify alternative modes of operation to determine the specific con-
ditions that will transition the application from one mode of operation to another.
For example, if an ATM banking machine runs out of cash to dispense, it cannot
conduct withdrawal transactions, but it can still process other transaction requests.
However, when the ATM machine is undergoing maintenance to replace wornout
parts or to refill the cash, receipts, and other consumables, the ATM is taken out of
service and no transactions can be conducted.

Separate operational models can be developed for each alternative mode of oper-
ation, or the operational model can account for each of the modes of operation. It is
sometimes more efficient to initially separate the operational, training, and support
models so that each model is given a defined focus. Once they are complete and
verified, these models can be integrated or combined into a single model, if desired.

8.3.2  Identify functional behaviors
The functional behavior of the software product must be defined and associated
with the measures of effectiveness and the previously defined operational threads.
The operational behaviors should describe how the organizational elements interact
with the software product by performing activities or workflows. The operational
model should express the control logic to enforce business rules, policies, and pro-
cedures. The exchange of information among organizational elements should be
expressed as inputs and outputs of an activity.

An operational model should be developed to depict the operational or business
workflow associated with each scenario. During the development of the operational
model, the systems that support the operational process should be identified as an
actor. Figure 8.3 provides an example of an operational behavioral model. The

Request for Additional Information
(Data Item)

Application
Incomplete

Complete Loan
Application
(Customer)

Submit Loan
Application
(Customer)

Receive Loan
Application

(Loan Processor)

Process
Application

(Loan Processor)
OR

Request Additional
Information

(Loan Processor)

Application
Verified

(Loan Processor)Application
Complete

Loan Application
(Data Item)

Acknowledgment
(Data Item)

FIGURE 8.3

Example of an operational (behavioral) model.

1498.3  Product analysis tasks

product behaviors will be explored further in Chapter 11. The operational model
should involve the following elements:

1.	 Organizational elements represent the organizations within the business enter-
prise, or external organizations, such as business partners, vendors, suppliers,
and users. Each organizational element represents a role in the operational
model, and is used to group the activities each organization must perform. Each
organizational element participates in the business process by performing opera-
tional activities in a time-sequenced workflow.

2.	 Actors represent a specific organizational role, user type, system, computing
equipment item, or application that participates in the operational process.
Actors perform activities and exchange information with other actors.

3.	 Operational activities represent the tasks or work that is performed by an actor.
An operational activity represents a step in conducting the operational or busi-
ness process to transform inputs into outputs. Operational activities may require
resources to be available to be executed. Operational activities are similar to
software functions but are expressed at the operational process perspective and
are performed by actors or organizational elements.

4.	 Process control mechanisms are the business rules and control mechanisms that
determine which step in the process will be executed next (e.g., If (condition)
Then (perform function X) Else (perform function Y)). Control mechanisms
may represent a loop condition that repeats previously performed activities
one or more times, or conditional branches where each branch involves activi-
ties appropriate to respond to an anticipated situation. If a customer applies for
credit, then upon an initial credit rating search, the application may be approved,
rejected, or subjected to further credit checking. Each result is dependent on the
results of the initial credit check and alters the follow-on activities associated
with the process.

5.	 Data items are the inputs and outputs of operational activities that represent the
exchange of information among the organizational elements and actors who are
transmitting or receiving the information exchange. The data flow is important
to capture because it may represent one of the following data flow types:
●	 Point-to-point—an output data item flows from one operational activity to

one other operational activity as an input.
●	 Broadcast—an output data item flows from one operational activity to two

or more operational activities as an input.
●	 Trigger—a point-to-point data item that initiates the receiving operational

activity. The receiving operational activity cannot begin to be executed until
the triggering data item is received.

●	 Data record—a data item that is published to or retrieved from a data source,
such as a database, file cabinet, or external application. A data record repre-
sents useful information that is going to be saved and retrieved in support of
business operations.

150 CHAPTER 8  Software Requirements Analysis Practice

6.	 Duration—each of the operational activities consumes time and when the oper-
ational model is analyzed the operational timeline can be generated to express
how long the operational process takes to execute. Since the objective of most
automation programs is to make the process more effective, less costly, and con-
ducted more rapidly, it is important to understand the existing process execution
time and the improvement in performance expected when the software product
is involved.

7.	 Resources—operational activities may require that resources be available for
an operational activity to be performed. The unavailability of a needed resource
will cause the activity to be placed into a wait-state until the resource is made
available. Resources can be of the following types:

●	 Consumable—a resource that is used up when the operational activity is
conducted. Resources that are consumed must have an initial amount that is
available, the maximum amount that can be on hand at any one time (inven-
tory capacity), and the amount that is consumed by the activity. An ATM
has a supply of money that it can dispense. Each withdrawal transaction
decrements the amount of money available to be dispensed as a consumable
resource.

●	 Reusable—a resource that is captured by an operational activity and is
released by the activity when it is done executing. A cash register is a reus-
able type of resource, and only one sales associate can conduct a transaction
using a register at a time.

8.3.3  Identify resource utilization needs
The operational model should be analyzed to understand how resource availabil-
ity impacts the operational or business process. The focus should be on computing
environment resources, which involve any physical or virtual component of limited
availability. Within the operational model, activities that are performed in parallel
may contend for available resources. Contention for resources results in process
delays that can be alleviated by increasing the availability of resources. When
resources are limited, then scheduling mechanisms may be needed to ensure that
high-priority functions are given access to resources before lower-priority functions.

At the operational or business process level, the resource utilization analysis is
useful in determining the resources incorporated into the computational environ-
ment. At the software product level of analysis, the availability of resources may
constrain data processing flow and may identify the need to modify the computing
environment definition to incorporate additional computing equipment.

8.3.4  Identify data processing conditional logic
The operational model should be assessed to determine how process control mech-
anisms need to be addressed by the software product. The process controls that
are to be exhibited by the software product must be articulated in a manner that

1518.3  Product analysis tasks

explicitly identifies the conditions to be interrogated, and the follow-on actions to
be performed when criterion are met.

8.3.5  Identify data persistence needs
The operational model should be analyzed to identify the data storage and transac-
tion processing requirements. These data persistence requirements should define the
computational environment characteristics in terms of the hardware and software
selected for database management functions. These requirements must address the
database management systems’ (DBMS) reliability metrics. Data persistence and
storage is an important function for most software applications, and typical DBMSs
enable transaction rollback and backup capabilities.

8.3.6  Identify data security needs
The requirements for data security must be specified to ensure that proper data
access and control procedures are implemented. The requirements for data secu-
rity must be evaluated to ensure that business and personal data cannot be com-
promised. The business rules that govern whom within the business operation
can access, modify, or delete data from persistent storage must be specified. The
requirements for data access control privileges for each class of users must be spec-
ified, as well as specific software requirements for access control monitoring and
enforcement.

An important aspect of data security is assigning a security classification identi-
fier for sensitive data elements. The different data security classification levels must
be defined and the criteria for data elements to be assigned to each classification
level should be specified. Table 8.1 shows some typical security classification levels
used in the private and government sectors.

In addition, the need for the application to apply cryptography algorithms to
encrypt data before it is stored or transmitted must be specified. Personnel secu-
rity levels and user classes or roles that may access data must be identified, and
the user classes, passwords, and data security administration responsibilities must
be identified. How the application is to enforce these responsibilities, provide the

Table 8.1  Typical Private and Government Sector Security Classification Levels

Business Sector Government Sector

Public Unclassified
Personal information Restricted
Sensitive Confidential
Confidential Secret
Private Top secret
Competition sensitive

152 CHAPTER 8  Software Requirements Analysis Practice

administration of the personnel and group accounts, protect personal data, and
monitor data access needs to be specified to ensure proper data security.

8.3.7  Identify data storage transactions
The operational model should be analyzed to identify the requirements for each
data storage and retrieval transaction. The rules for executing each transaction and
the conditions that would necessitate rolling back the transaction should be iden-
tified. The selected DBMS should be reviewed to identify causes for transaction
deadlock situations. During functional analysis, these potential deadlock situations
should be further decomposed to identify how the software product will need to
monitor each transaction to detect deadlocks and how these situations should be
resolved by cancelling and rolling back the transaction, or the use of other preven-
tative measures that avert deadlock situations from occurring.

8.3.8  Identify measures of performance
During architecture definition, the measures of effectiveness (MOE) should be bro-
ken down into multiple measures of performance (MOP) that address how well
the software solution is expected to achieve each MOE. Measures of performance
should address measures that appraise operational performance characteristics, such
as the number of transactions that should be executed within a period of time, accu-
racy of data transformations, and resource utilization.

8.4  Sustainment analysis tasks
The sustainment analysis tasks address specifying the requirements for product dis-
tribution, training, and support. As the software product architecture is developed,
the requirements for replication, distribution, training, and sustainment processes
must be revisited to ensure that the post-development processes have been ade-
quately specified.

8.4.1  Identify post-development process operational concepts
The software post-development processes must be specified, and eventually
designed, implemented, and tested. The primary post-development processes that
affect software products are software replication, distribution, training, and sustain-
ment. Software products are unique in that they are a media that can be distributed
electronically over the Internet, or packaged and distributed to customers or retail
outlets.

The sustainment concept should address how the end users, customers, comput-
ing environment, and software product will be supported once the software product
is deployed or distributed. Software support involves software modifications that fix
reported errors and enhancements of the software product through the addition of

1538.4  Sustainment analysis tasks

new functionalities. System hardware may involve preventive maintenance actions
that are necessary to prevent the wear-down of hardware components and replace-
ment of wornout components. The software product operational concepts must
identify possible system hardware failure modes and maintenance situations to
determine how the application should react. The software product may need to be
“state-aware” so that data processing operations can be disabled or suspended while
system maintenance actions are being conducted.

The sustainment concepts must be understood to assess the life-cycle costs for
the software solution. Since the solution may be part of a business operation, the
support costs of the computing environment and software product must be quantifi-
able and may affect design decisions.

8.4.2  Identify post-development process operational scenarios
The operational concepts should be expanded to identify the range of the antici-
pated operating scenarios for each post-development process. The scenarios for
product distribution should address sales channels, distributors, licensing, product
return policies, warranties, and software patch delivery. The scenarios for product
training should address tutorials, training exercises and materials, user manuals,
classroom instruction materials, and third-party training partners. The scenarios for
product sustainment should address help-desk operations, problem reporting, track-
ing and resolution, and development of software product enhancements.

The measures of effectiveness must be identified for the overall performance of
the post-development process solution (software product distribution, training, and
sustainment) in achieving sustainment objectives. Measures of effectiveness define
the desired effectiveness of the solution in terms of its ability to perform its mission
as expressed by the operational scenarios.

8.4.3  Identify post-development process characteristics
The operational model and support concepts should be analyzed to identify and
specify the requirements for packaging, distribution, and installation. Software sus-
tainment involves “the processes, procedures, people, material, and information
required to support, maintain, and operate the software aspects of a system.”3 These
requirements may involve functionality that must be addressed during functional
analysis and application design synthesis. In addition, the approach selected for
achieving each of these processes may have a schedule impact on product release,
as well as product and program costs.

Packaging may be done via external sources and may include media replication
(e.g., compact disc duplication), user manuals and installation instruction reproduc-
tion, packaging artwork, product packaging, and boxing for shipment.

3 Sustaining Software-Intensive Systems, May 2006, CMU/SEI-2006-TN-008, http://www.sei.cmu.
edu/reports/06tn008.pdf.

http://www.sei.cmu.edu/reports/06tn008.pdf
http://www.sei.cmu.edu/reports/06tn008.pdf

154 CHAPTER 8  Software Requirements Analysis Practice

Distribution may be done via in-house shipping resources, external postal ser-
vices, or through the Internet. Internet distribution will require some effort to
prepare, test, and monitor website activity that permits access to the electronic dis-
tribution packages, as well as providing electronic payment methods.

Installation may be done at the customer’s operational location to properly con-
figure the computing environment to achieve the best software performance, or it
may be installed by the organization’s network administrator. Commercial software
installation packages may be used, and some effort will be required to prepare and
verify that the installation package works properly on a variety of computer envi-
ronments and with a range of operating systems.

Training delivery methods must be determined and specified to incorporate the
cost associated with end-user training as part of the software deployment strategy.
The common forms of training methods involve: (1) hands-on, instructor-led class-
room training, where an instructor shows users how the software works and how
to perform common tasks; (2) group demonstration seminars, where an instructor
shows users how the software works and how to perform common tasks in a live
demonstration; (3) computer-based training (CBT), which allows end users to com-
plete interactive lessons that walk them through the process of performing common
tasks, and the interactive software tests them on their performance and understand-
ing; and (4) book-based training, where end users complete workbook lessons in
how to perform common tasks, often illustrated with screenshots. Whichever train-
ing method or combination is selected, the requirements for product training must
be specified. This involves identifying the set of user documentation and training
materials that must be developed and available at the software deployment readi-
ness review.

Support processes involve help-desk operations, problem reporting, tracking,
resolution, software patch deployment, and software enhancement development.
The establishment of the organizational capability to perform each of these pro-
cesses must be planned and developed to support the software deployment readi-
ness review. This may involve the transition of software development (engineering,
implementation, and testing) equipment and CASE tools to the sustainment organi-
zation. An inventory of items to be transitioned must be addressed by the software
requirements specifications to provide a basis for post-development planning.

8.4.4  Identify architectural guidelines and principles
The architectural guidelines and principles need to be established that will gov-
ern the evolution of the software architecture throughout the software product life
cycle. These guidelines and principles should address the business and quality
objectives for the software product, and should provide governing concepts for the
structure of the product and its ability to adapt to changes in the technology compo-
nents of the computational environment. In addition, these guidelines and principles
should address the perspectives of various participants in the software life cycle
(user, designer, tester, supporter, etc.). The architecture guidelines and principles

1558.5  Project assessment tasks

must be measurable so that the functional and physical architectures can be evalu-
ated to ensure compliance.

8.5  Project assessment tasks
The sustainment analysis tasks address analysis of the software requirements
against project objectives, plans, and resource constraints to ensure that the require-
ments can be satisfied. Risks that are inherent in the requirements must be consid-
ered to provide an acceptable probability of project success.

8.5.1  Assess requirements sensitivity
The software requirements must be evaluated to determine to what extent the
viability of the project is influenced by risks. Sensitivity and risk analyses4 are
concerned with factors and combinations of factors that may lead to unfavorable
consequences. These factors must be identified in the project framework as risks or
assumptions. The set of software requirements may need to be modified to improve
the probability of project success.

8.5.2  Identify the software test strategy
The operational model should be evaluated and the initial software test plan should
be prepared to establish the strategy and approach to testing the software product
against the software requirements and computational environment specifications.
The software test plan should identify the software test environment and provide
a traceability matrix that relates requirements to the elements of the software test
strategy. The software test environment includes the hardware configuration(s),
operating systems, and related applications that will be involved in qualifying that
the product satisfies the specified requirements.

It is important to begin test planning as the requirements become better understood
since testing can consume up to 20% of the schedule and 30% of the development costs.

Based on the software developer and user surveys, the national annual costs
of an inadequate infrastructure for software testing is estimated to range from
$22.2 to $59.5 billion. Over half of these costs are borne by software users in the
form of error avoidance and mitigation activities. The remaining costs are borne
by software developers and reflect the additional testing resources that are con-
sumed due to inadequate testing tools and methods.5

5 National Institute of Standards & Technology (NIST), Program Office Strategic Planning,
and Economic Analysis Group, Planning Report 02-3, The Economic Impacts of Inadequate
Infrastructure for Software Testing, May 2002.

4 Sensitivity analysis tries to estimate the effect on achieving project objectives if certain assumptions
do not, or only partly, materialize. Risk analysis assesses the actual risk that certain assumptions do
not, or only partly, occur.

156 CHAPTER 8  Software Requirements Analysis Practice

Software testing typically is accounted for only during the testing phases, as
shown in the NIST report, and reflected in Figure 8.4. However, test planning and
the establishment of test cases and procedures occur throughout the early phases
of software development. Software testing must be recognized as a significant
effort, and its planning must begin at the earliest possible time. While the soft-
ware requirements are being analyzed, evaluated, and formalized, the challenges to
testing and qualifying the software product must be identified. The product quali-
fication section of software specifications identifies the analysis, inspection, dem-
onstration, and test methods that will be used to confirm requirements satisfaction
based on test results. The cost of software testing is an important contribution in
determining overall software development costs.

8.5.3  Assess proposed changes
Changes to software requirements must be assessed to determine the impact of
the change on the project framework against the necessity for the change. If a pro-
posed change is determined to be essential for the software product to satisfy stake-
holder needs, then the change may be necessary. However, the project resources
may not accommodate the additional work effort necessary to incorporate the pro-
posed change into the software architecture. The approach for performing a change
impact assessment involves the following five steps:

1.	 Define the scope of the change proposed by identifying the work packages that
would be affected by authorizing the change.

2.	 Determine the key differences in the proposed project state to determine the
impact on the project’s critical path toward achieving milestones and objectives.

3.	 Determine the ability of the project framework to accommodate the proposed
change by adjusting work estimates, as appropriate.

4.	 Assess the project sensitivity or probability of success assuming the change is
authorized.

5.	 Present the findings and recommendations to the appropriate change control
board.

Change proposals should address changes to the requirements baseline once it is
established and should involve one or more stakeholders to champion the proposed

Requirements
Analysis

1960s – 1970s

1980s

1990s 40%

20%

10%

30%

60%

80%

30%

20%

10%

Preliminary
Design

Detailed
Design

Coding and
Unit Testing

Integration
and Testing

System
Testing

FIGURE 8.4

The allocation of effort to software development phases.

1578.6  Establish the requirements baseline

change. Each change proposal must be authorized by the project-level change con-
trol board. Change requests involve a change to the software architecture to facili-
tate software implementation, testing, or sustainment activities. Change requests
must be authorized by the technical-level change control board once the software
product architecture is baselined.

Each time the requirements are allowed to be modified the impact of the change
on the operational process, functional and physical architectures, specifications,
documentation, test plans and procedures, work breakdown structure, and other
related items needs to assessed. This leads to application features that weren’t origi-
nally planned and increases risk to software application quality or development
schedule.

8.5.4  Assess project feasibility
The alignment of software requirements to project objectives, work packages, and
risks provides the basis for understanding the feasibility of project success. The
purpose of this task is to determine if the software solution can be achieved within
project cost and schedule constraints. Project feasibility is dependent on the accu-
racy of the work plan and the technical risks associated with the software solu-
tion. Monitoring work progress against plans will confirm whether the project and
technical plans accurately reflect the work to be performed. Technical risks may be
reduced by initiating prototyping efforts to determine if the solution is viable and
can be developed according to plans.

8.6  Establish the requirements baseline
As the requirements evolve and mature, a requirements baseline should be established
and maintained to reduce the impact of requirements creep or continual changes to
the baseline. Requirements creep implies a tendency for product requirements to
be modified or supplemented as the solution is being architected and implemented.
Requirements creep may be driven by a stakeholder’s growing “wish list” or by devel-
opers as they recognize opportunities for improving the solution’s appeal to users.

The requirements baseline represents the design-to set of requirements. The
requirements baseline should not be established before the design solution is fairly
mature and complete since changes to the requirements baseline will impact project
cost projections and schedule timelines. This is why it is necessary to explore the
software solution via functional analysis and application design synthesis to ensure
that the requirements set is complete, consistent, achievable, and affordable.

Once the software product requirements baseline is established, all recom-
mended changes to the requirements must be formally approved by the project
change control board (CCB). Each proposed change should be documented in an
engineering change proposal (ECP) with the appropriate specification and docu-
mentation change pages included.

158 CHAPTER 8  Software Requirements Analysis Practice

As the software architecture evolves and matures, the specification and docu-
mentation trees should be updated to identify the requirements specifications,
design documents, engineering drawings, and training and user manuals. Table 8.2
provides a list of the typical software requirements documentation items that com-
prise the software product requirements baseline.

Table 8.2  Software Requirements Documentation

Document Title Type

Software Requirements Specification Specification
Computational Environment Requirements Specification Specification
Software Interface Specification Specification
Operational Model Design artifact
Functional Behavioral Model Design artifact
Function Architecture Description

●	 Functional Component Specifications
●	 Functional Unit Specifications
●	 Functional Interface Specifications

Design document

Physical Architecture Description
●	 Structural Component Specifications
●	 Structural Unit Specifications
●	 Software Interface Descriptions
●	 Software Integration Strategy

Design document

Requirements Traceability Matrix Design artifact

159Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00009-4

Software Requirements
Management 9

CHAPTER

CHAPTER OUTLINE

9.1  Embracing change... 160
9.1.1  Time is a valuable resource..160
9.1.2  Change impact analysis...162
9.1.3  Adjusting project milestones..164

9.2  Specifying requirements... 166
9.3  Requirement decomposition and allocation... 168

9.3.1  Functional analysis...169
9.3.2  Performance allocation..169
9.3.3  Structural unit synthesis..170
9.3.4  Structural component synthesis...170

9.4  Requirement traceability.. 170
9.4.1  Change control...171
9.4.2  Configuration audits..172

Managing requirements is an essential practice that contributes to the success of
any software development effort. Requirements define the scope of the work the
project will execute in an attempt to satisfy stakeholders. The development of
a software architecture is enabled by establishing an agreed upon set of software
requirements. The software requirements must be controlled to ensure that the soft-
ware architecture and implementation can satisfactorily pass acceptance testing and
configuration audits. If the software requirements are not stabilized early in the pro-
ject, then the project and technical plans, product architecture, and software imple-
mentation will experience continual upheaval attempting to keep up with changing
requirements.

The software development must be viewed as a fixed time continuum during
which the software solution must evolve from a concept to a deployable product.
The software requirements disclose the ingredients for achieving success, while
the project and technical plans expose the perils of navigating treacherous territory.
Permitting requirements to be superfluous, ambiguous, or erratic will lead the pro-
ject into a state of chaos. The development of the software architecture cannot be
completed until the requirements have been stabilized and baselined.

The primary objective for the software engineering team is to establish sym-
metry among software requirements, project cost, and schedule objectives. If the

http://dx.doi.org/10.1016/B978-0-12-407768-3.00009-4

160 CHAPTER 9  Software Requirements Management

software requirements are permitted to be changed constantly throughout the initial
phases of development, then the software architecture will be continually in a state
of modification. Each change to a software requirement consumes project resources
by demanding design rework and replanning. While configuration management
practices endeavor to control changes to software requirements, change is inevita-
ble and must be facilitated if the project is to result in a product that is satisfactory
to its stakeholders.

This chapter addresses how software engineering practices should be instituted
to control requirements instability while establishing the architectural framework
necessary to incorporate changes when they are deemed necessary.

9.1  Embracing change
It is not possible to conduct a technology-laden project, such as software develop-
ment, believing that stakeholder requirements will not be altered from their origi-
nal articulation. Stakeholders will change their requirements for two fundamental
reasons:

1.	 Their understanding of the software product will improve as they participate in
the software development effort.

2.	 Their business or operational situation will change from the moment the soft-
ware development project is commissioned.

Change is inevitable and, therefore, must be addressed as an integral element of
the development process. To accomplish this, two principles must be instituted to
prepare the development team to properly contend with and manage the unavoid-
able onslaught of change proposals and requests. First, the project team must recog-
nize that time is an adversary, not an ally. Every change that is authorized devours
resources and deters progress toward achieving project objectives. Second, because
some changes must be authorized, the project structure and product architecture
must be adaptable to realize a sophisticated product that will be delivered several
years in the future.

9.1.1  Time is a valuable resource
When an organization embarks on a new software development effort, it is impera-
tive that it recognize that its scheduled delivery date is its primary ambition. It is
not acceptable to squander its resources performing unnecessary or trivial tasks.
Most enterprises place a large burden on development teams with excessive proce-
dures and bureaucracy that distract from the engineering effort. Many organizations
favor financial accounting, legal, and administration practices over engineering
aptitude. Engineering a quality product, while making the best use of enterprise
resources, must be the goal. No amount of administrative oversight will contribute
to achieving this end.

1619.1  Embracing change

Technical planning must account for administrative practices; however, the
effort associated with these practices should be incorporated into each of the techni-
cal tasks definitions. The work breakdown structure (WBS) and its work packages
should focus on the identification of technical effort. Each work package must iden-
tify its contribution toward achieving interim development objectives for the soft-
ware product. Administrative charges must be incorporated into each work package
definition and should be restrained as a resource liability and treated as an overhead
charge. Documenting technical planning, software design, implementation, and test
procedures are not administrative tasks.

The merits of a proposed change to stakeholder needs should be evaluated
before much effort is expended on determining its impact on the project frame-
work. Proposals that merit further consideration must be evaluated to understand
the importance of the proposed change to the operational concept and the repercus-
sions to the software product architecture and project work load. Proposed changes
should be able to be integrated into the architecture without increasing product
complexity or risk to achieving project cost and schedule objectives.

The software product architecture involves four primary quality attributes1:

1.	 Integrity, which is the ability of separately implemented software elements to
work cooperatively together (software implementation).

2.	 Modifiability, which addresses the ease with which the architecture can accom-
modate changes (product support).

3.	 Testability, which addresses the ease with which the software product can be
demonstrated to satisfy its specifications and stakeholder’s needs (acceptance
testing).

4.	 Usability, which is the ease of use and training of end users (training). Each of
these attributes directly impacts a software life-cycle concern and total life-cycle
costs.

The evaluation of implementing a desired change proposal must determine the
impact of the change on the engineering solution, represented by the software prod-
uct architecture. If the architecture has been designed to be modifiable, then the
effect on the architecture may not be substantial. Assuming the architecture and its
documentation have been kept current, then it should be relatively simple to iden-
tify the design alterations that must be accomplished to affect the proposed change.
This mandates the need for extensive traceability among the software architecture
elements and project control mechanisms.

The software architecture and its documentation and relationships to work pack-
ages facilitates the incorporation of proposed changes into the software product
and plans. However, every change implementation affects the progress of the pro-
ject as staff effort is diverted from planned activities to revise the product archi-
tecture, documentation, and plans. The impact analysis must account for progress

1 See http://www.softwarearchitectures.com/go/Discipline/DesigningArchitecture/QualityAttributes/tabid/
64/Default.aspx.

http://www.softwarearchitectures.com/go/Discipline/DesigningArchitecture/QualityAttributes/tabid/64/Default.aspx
http://www.softwarearchitectures.com/go/Discipline/DesigningArchitecture/QualityAttributes/tabid/64/Default.aspx

162 CHAPTER 9  Software Requirements Management

regression when assessing the effort required for the incorporation of a change
into a partially complete architecture description. Original tasks may need to be
revised, rescheduled, or eliminated altogether to accommodate the change. Every
change will involve some rework that affects established architectural design doc-
umentation, reanalysis of previous architectural decisions, and additional analysis
to incorporate the proposed change into the existing architectural framework. This
potentially will result in progress being suspended while a change is assimilated
into the software architecture to establish a new basis for proceeding toward an
architectural conclusion.

In the final analysis, change proposals should not be considered for adoption
once the product architecture is nearing completion. Initial planning estimates
for the architecture definition phase of development should incorporate adequate
resource and schedule leeway to account for requirements changes. With suffi-
cient flexibility planned into the early phases of development, a number of critical
change proposals may be accommodated. This preplanned schedule margin should
be included in every work package, as a buffer, to ensure the achievement of the
critical design review (CDR) milestone and transition to software implementation.

9.1.2  Change impact analysis
Every proposed change must be analyzed to determine if the change should be
authorized and incorporated into the development framework. Prior to conducting
a detailed impact assessment, the criticality of the proposed change must be estab-
lished. The critical nature of a proposed change should indicate the necessity of
the change from the perspective of software operational suitability. Table 9.1 iden-
tifies common industry levels of criticality associated with standard configuration
management engineering change proposal priority codes. These criticality levels
are intended to establish the relative merits of a change proposal that may improve
the return on investment to the enterprise. The decision to initiate a change impact
assessment should be based on the perceived importance of the proposed change to
stakeholders.

A change impact assessment is a technical cost-benefit analysis where cost
addresses the work packages necessary to incorporate the change, while the benefits
are those perceived advantages to stakeholders. Intangible benefits may be hard to
quantify, but future business opportunities, technical experience, and proficiency
gained by undertaking the new requirement and influence on the enterprise reputa-
tion all constitute perceived advantages. A change impact assessment involves the
following steps:

1.	 Change network analysis. Identification of the related technical tasks that will
be affected by the requirement change. The related technical tasks affected
by a change to an existing requirement can be identified relatively simply if
the requirements traceability associations have been thoroughly identified
and maintained. New requirements will need to establish these traceability

1639.1  Embracing change

associations to identify the related tasks that must be assessed to determine the
impact of a proposed change on the technical plan. New requirements may insti-
gate the inclusion of additional tasks to the work plan. This includes any rework
necessary to incorporate a change into the software architecture, documentation,
and technical plans (especially the software implementation and testing plans).

2.	 Conflict assessment. Identification of other requirements that may be in conflict
with the proposed change. Requirements may impose inconsistent, divergent, or
contradictory design objectives that must be resolved before the requirements
can be specified. This adjustment to conflicting requirements will impose addi-
tional rework of technical tasks and progress recession.

3.	 Solution feasibility. The ability to establish an architectural solution that satisfies
the proposed change and associated conflicting design objectives may introduce
additional risks to the achievement of project objectives. This typically results
in establishing an architectural design that achieves an acceptable compromise
among conflicting design objectives. Trade-off analysis and risk assessment of

Table 9.1  Alignment of Software Change Proposal Criticality Levels

Configuration Management-based
Engineering Change Proposal (ECP)
Priority Codes

Proposed Software Change Proposal
Criticality Levels

Emergency: To affect a change in
operational characteristics that, if not
accomplished without delay, may seriously
compromise national security.
To correct a hazardous condition that may
result in fatal or serious injury to personnel
or in extensive damage or destruction of
equipment.

Emergency: To affect a change in operational
characteristics that, if not implemented
without delay, will seriously compromise
stakeholder operational effectiveness.
To correct an unsafe operational situation
that may result in serious injury to personnel
or in extensive damage or destruction of
equipment.

Urgent: To affect a change that, if not
accomplished expeditiously, may seriously
compromise mission effectiveness of
equipment, software, or forces.
To correct a potentially hazardous
condition that could result in injury to
personnel or damage to equipment.
To meet significant contractual
requirements.

Essential: To affect a change that,
if not implemented, may seriously compromise
operational effectiveness of equipment,
software, or operational processes.
Decisive: To affect a change that may
be significant to expanding product
attractiveness to potential clientele.
Compliance: To meet contractual or
agreement requirements.

Routine: When emergency or urgent
implementation is not applicable, required,
or justified.

Constructive: To affect a change that, if not
implemented, may be disadvantageous to
product feasibility or may be advantageous
to expanding product attractiveness to
potential clientele.
Subjective: To affect a change that favors
one or more stakeholders’ operational
processes,

164 CHAPTER 9  Software Requirements Management

design alternatives is essential to deriving a feasible and highly advantageous
design solution.

4.	 Solution cost appraisal. Identification of the anticipated cost of incorporating
the proposed change to the work plan. This includes the modification of exist-
ing work packages and inclusion of additional work packages to the work plan.
The solution cost appraisal should identify the change in resources required to
accomplish the change proposal, as well as modifications to task scheduling and
milestone achievement.

5.	 Perceived benefit appraisal. Identification of the anticipated benefits derived
from the authorization of the proposed change in terms of stakeholder satis-
faction, product viability, market growth potential, potential business capture
resulting from the experience gained, etc. In a contracted arrangement, the
customer should fund any costs associated for incorporating a change deemed
beneficial. If the cost is prohibitive, then the perceived benefits do not exceed
the cost of the change.

9.1.3  Adjusting project milestones
The software development schedule should be viewed as a continuum of time
in which the software product evolves from concept to operational product.
Development milestones represent significant decision points in the product
evolution as it transitions from one phase of development to another. At each mile-
stone, the technical accomplishments should be reviewed to ensure that the product
development is progressing suitably toward achieving project objectives. Milestones
represent a hiatus from technical work to determine if the current product definition
is sufficiently complete to justify the initiation of the next phase of development.

The objectives of each phase may be impacted by change proposals that have
been authorized. Project milestones should not be delayed by change requests
unless the number of changes is deemed excessive. The status of incorporating
each change request into the software architecture should be reviewed at each mile-
stone to understand the estimated time to complete the effort. This will result in
a delay with milestone completion, and the criteria for completing the milestone
should be revised to reflect the need to complete the incorporation of authorized
change requests into the software architecture. This effectively extends the planned
development phase completion date past the milestone review. Figure 9.1 shows
the planned phase-dependent schedule and milestones and the impact authorizing
change requests may have on completion criteria.

The relationship between phase completion dates and the associated milestone
reviews causes confusion whenever delays occur. Each phase of development is
planned by establishing the start data, duration, and planned completion date. A set
of criteria must be established to determine when a phase is deemed to be complete.
The milestone reviews are typically aligned with the end dates of each phase to per-
mit the technical review of the progress of the development effort. These reviews
are intended to represent program decision points on whether the project should

1659.1  Embracing change

begin the next phase of development. Each review should be defined with a set of
readiness and completion criteria. Readiness criteria establish the minimum condi-
tions that must be satisfied for the review to be conducted. During the review, many
actions may be assigned that affect the current state of the product development
effort. Some of these actions must be completed prior to considering the review to
be completed. Therefore, a review may not be considered successfully completed
until the action items have been satisfied. In most cases, this situation will cause an
overlap of two development phases that were initially planned to be conducted in
series.

It is important for the project schedule to be driven by progress, not by planning
dates. Planned dates for phase initiation may not be dependent on the successful
completion of the prior phase or review. There may be large elements of the soft-
ware architecture that are stable and can be moved into the next phase of develop-
ment while action items from the milestone reviews are resolved. The challenge is
to understand what elements of the architecture are impacted by an action so that
effort is not expended defining or designing elements that may be changed as a
result of the action.

The plans for ensuing phases of development must be updated to determine the
extent of any impact the actions have on phase-dependent work packages. It may be
possible to minimize the impact by realigning the work packages to make best use
of personnel resources. The objective of this replanning effort is to determine if the
planned milestone review dates can be achieved despite change proposals or actions
resulting from the reviews.

Phase Start Date Phase Start Date
Completion Criteria Completion Criteria

Planned Completion Date

Software Requirements Review (SRR)
SRR Planned Date
SRR Readiness Criteria
SRR Completion Criteria

Preliminary Design Review (PDR)
PDR Planned Date
CDR Readiness Criteria
CDR Completion Criteria

Planned Completion Date

Software Requirements Definition

Phase Start Date Phase Start Date

Preliminary Design Review (PDR)Software Requirements Review (SRR)

Completion Criteria
Planned Completion Date

SRR Planned Date
SRR Readiness Criteria
SRR Completion Criteria

PDR Planned Date Delayed
CDR Readiness Criteria
CDR Completion Criteria

Phase Completion Delay
(Phase Overlap)

Phase Completion
Slippage

Software Requirements Definition Preliminary Architecture Definition

Completion Criteria
Planned Completion Date

Preliminary Architecture Definition

FIGURE 9.1

Phase-dependent schedule and milestones.

166 CHAPTER 9  Software Requirements Management

9.2  Specifying requirements
Specifying software requirements involves close, careful, and thorough exami-
nation of the software product’s role in operational or business processes.
Requirements statements may appear to be straightforward, but beneath the surface
there may be many difficulties associated with implementing and testing the condi-
tions stipulated by a requirement. There are nine principles that should be applied
to ensure that requirements are accurately stated, may be satisfied within estab-
lished project constraints, and do not adversely affect post-development processes
or life-cycle costs. These principles are:

1.	 Requirements express what a product must do and how well it must operate.
Every requirement should identify an operational function and its associated
measures of effectiveness. At the software product echelon, the requirements
should address the practical functions the software product is intended to per-
form. Each function must be measureable in terms of the acceptable range of
performance necessary for the product to be acceptable to stakeholders. At
lower levels, the requirements should address individual elements of the product
design. Lower-level requirements express functions in terms of data processing
procedures and must identify the acceptable range of performance necessary for
the product to contribute to product execution.

2.	 Requirements must be unambiguous. Requirements should not be expressed
using language that may be vague or unclear. A properly stated requirement
should be written in a manner that leads to one, and only one, interpretation. An
unambiguous statement is explicit (expressing all details in a clear and obvious
way, leaving no doubt as to the intended meaning), unequivocal (allowing for
no doubt or misinterpretation), and distinct (clearly different and separate from
others). The natural language in which requirements are stated is inherently
imprecise with words having more than one meaning or connotation. Therefore,
the requirements analysis tasks are intended to ensure that every requirement
is properly stated to prohibit misunderstanding or interpretation by being sup-
ported with adequate analytical documentation.

3.	 Use design models to express concepts and eliminate potential confusion.
Modeling should be used to express design concepts to stakeholders and mem-
bers of the development team. Models may be used to express the behavior
(functions and performance) of a product and its characteristics. Models may be
static (e.g., drawing or diagram) or dynamic (e.g., executable, mock-up or pro-
totype, simulation), and should be used wherever necessary to explain in greater
detail the meaning of the requirements.

4.	 Requirements should not impose unnecessary design or implementation con-
straints. A constraint limits the freedom of the development team and restricts
the solution space. Requirements that enter the realm of the solution should be
written as a suggestion to clarify stakeholder desires.

1679.2  Specifying requirements

5.	 Requirements should be challenged if they appear excessive or consequential.
Stakeholder needs should be understood by challenging the operational or busi-
ness demands for a requirement. Such challenges, if substantiated, improve
the understanding of the development team and clarify any assumptions that
may have been inferred from initial consultations. Stakeholders have grandiose
expectations and little appreciation for the intricacy associated with some soft-
ware gymnastics (i.e., the performance of a series of complex mental or physical
operations with great agility and skill). Many requirements may be simplified or
diminished when stakeholders are made aware of their exaggerated demands.

6.	 Requirements impose costs and schedule ramifications. Every requirement
involves a cost associated with product development, post-development opera-
tions, or product sustainment. Requirements should be analyzed to understand the
life-cycle cost implications of each requirement. There may be alternative ways
to express a requirement that alleviate software development exposure to risks.

7.	 Requirements may foster design complexity. Requirements may be stated in a
manner that implies or amplifies product complexity. Diminishing the complex-
ity of the product is an imperative principle that reduces product development
and sustainment costs, as well as promotes ease of use. Trade-off analysis
should be performed to evaluate alternative requirement articulations to deter-
mine their impact on design complexity.

8.	 Requirements should not relinquish control over interface definitions. Whenever
a software product must interface with another system, whether it is operational
or under development, the software development team must participate in the
definition of the interface if it is to be held accountable. Whenever the span of
control of the software development team is relinquished, their ability to prop-
erly plan the scope of the development effort is impacted. External systems may
be aging and in need of technology refreshment or redevelopment. It is impor-
tant to understand the longevity of the interfacing systems before mandating
interface control. Redefining an interface may provide significant improvement
in software performance.

9.	 Risks always originate with the requirements. Requirements should be assessed
to identify potential risks to achieving project success. Requirements are
the source of all risks and the risks imposed by each requirement should be
appraised before the requirement is embraced. Requirements that involve severe
risks should be simplified to permit the initial software delivery to be achieved
within costs and project constraints. The design and implementation of a risk-
burdened requirement can then be pursued in parallel without jeopardizing
project success. Requirements should be evaluated by answering the following
questions:
●	 Can the requirement be satisfied without consuming a disproportionate

amount of technical resources?
●	 What are the potential consequences that may arise if the requirement cannot

be satisfied?

168 CHAPTER 9  Software Requirements Management

●	 What are the best-case, probable, and worst-case scenarios associated with
an attempt to satisfy a requirement?

●	 How can the requirement be restated to eliminate or diminish the risks it
imposes to project success?

9.3  Requirement decomposition and allocation
Initial software requirements are generally a substantial, complex covenant against
which the delivered product is to be qualified. Every requirement must be translated
in form from natural language into a set of design features, characteristics, or quality
attributes of the software product that can be implemented. This fundamental prem-
ise differentiates software engineering, as described in this book, from existing soft-
ware development methodologies or practices. The translation of a requirement into
a design requires the application of software engineering practices to design, plan,
implement, and sustain software products. Beginning with software requirements, the
technical organizations must collaborate to establish a software product architecture
that can be implemented, tested, and sustained. Requirements must be able to be traced
throughout the product architectural design, test cases and procedures, technical plans,
and control mechanisms. This traceability facilitates the technical team’s responsive-
ness to proposed changes to stakeholder needs, software requirements, or design chal-
lenges. Figure 9.2 identifies the requirement decomposition and allocation flow.

Stakeholder Needs
& Expectations

Operational Model

Change
Proposals

Software Requirement
Specifications

(Requirements Analysis)

Product Functional
Architecture

(Functional Analysis &
Allocation)

Change
Requests

Product Physical
Architecture

(Design Synthesis)

Product
Configuration
Audit (PCA)

Software Product
Image(Release)

Software Product
Image(Testing)

Software Test
Procedures

Software
Implementation

Software Test Plan
(Test Cases)

Functional
Configuration
Audit (FCA)

Project Management Controls Technical Management Controls
WBS Work Packages

Traceability Database
Technical Change Control
Board
Technical Management Plan
& Schedule(TMP/TMS)

Risk Database
Change Control Board
Integrated Management Plan
& Schedule(IMP/IMS)

FIGURE 9.2

Requirement decomposition and allocation flow.

1699.3  Requirement decomposition and allocation

Requirements are decomposed to identify lower-level functional and performance
requirements that are necessary to satisfy the original requirements. Decomposition
provides a basis for identifying, in increasing levels of detail, how the software prod-
uct will perform its operational functions. Requirements decomposition must be per-
formed to break large, complex functions into elementary functions that can be used
to develop structural design concepts. Requirements decomposition is necessary to
examine the problem space addressed by a requirement and to determine the sequen-
tial or concurrent functions that must be performed to provide an adequate software
solution to that requirement.

9.3.1  Functional analysis
It is not possible to decompose operational or business requirements directly into
software structural elements, such as classes. Requirements must be decomposed
into subrequirements for which design solutions are straightforward, uncompli-
cated, and unproblematic. Therefore, the operational requirements for the software
product must first be decomposed to identify the intermediary and root functions
(components and units) that the software product must accomplish.

Functional analysis is the software engineering practice by which operational
functions, expressed by the software requirements, are decomposed into transitional
(functional component) and rudimentary (functional unit) functions. The resulting
functional architecture identifies and specifies the complete set of functions that the
design solution must comprise. This practice emphasizes a top-down methodology
for breaking the problem down into a complete set of functions that the design solu-
tion must exhibit. However, the practice involves iterating up and down the func-
tional hierarchy to resolve functional complexity challenges.

9.3.2  Performance allocation
The performance associated with the operational requirements must be satisfied
by the combination of functions. Therefore, the functional solution must satisfy
the operational performance characteristics established by the operational require-
ments. The functional timing and resource utilization of the functional solution
must resolve the performance requirements specified for the software product.

Performance allocation involves the establishment of performance budgets as
the operational functions are decomposed. Root functions must then be analyzed to
determine the range of execution performance measures utilizing computer science,
mathematics, and knowledge of the computing environment performance character-
istics. Functional performance budgets must be revised to establish the functional
specifications for each element of the functional architecture. The functional archi-
tecture is declared to be complete when the functional specifications for functional
components and units can be verified to satisfy the software product requirements.

The allocation of performance requirements throughout the functional archi-
tecture establishes the basis for achieving software product performance require-
ments. The objective of software performance engineering is to achieve response

170 CHAPTER 9  Software Requirements Management

time, throughput, and resource utilization levels that meet specified performance
objectives. Software performance is dependent on the characteristics of the comput-
ing environment. Computing environment characteristics that must be considered
during software architecture definition include, but are not limited to, the following:

1.	 Execution time
2.	 Memory utilization

a.	 Primary memory (random-access memory, RAM) consumption
b.	 Virtual memory (secondary storage) consumption

3.	 Swap time (virtual memory management read and write latency)
4.	 Data storage latency (the time it takes to access a particular location in storage)
5.	 Data storage throughput (the rate at which information can be read from or writ-

ten to the storage)
6.	 Interrupt latency (the time between the generation of an interrupt by a device

and the servicing of the device)

9.3.3  Structural unit synthesis
Design synthesis is the software engineering practice that establishes the structural
units of the design solution or physical architecture. Structural units represent the
building blocks of the software product and are specified to facilitate software imple-
mentation (coding and testing). Structural units are derived by combining similar
functional units and resolving differences among the functional specifications. This
results in an integrated specification for each structural unit. During software imple-
mentation, the majority of the coding is accomplished at the unit level of development.

9.3.4  Structural component synthesis
Structural components are determined by identifying structural units that need to
be integrated to provide intermediary structural assemblies. Structural components
represent the incremental assembly, integration, and testing of the software prod-
uct providing successive levels of functionality. Structural components establish the
strategy for software component integration and testing to be accomplished during
software implementation.

Structural components are specified by identifying the functional and perfor-
mance characteristics that arise as a result of the integration of lower-level struc-
tural components or units. During software implementation, structural components
may require additional code to be generated to administer execution control logic.
This will result in the recognition of internal and external interfaces that must be
exercised during component integration and testing.

9.4  Requirement traceability
Software product requirements must be traceable throughout the functional and
physical architectures to facilitate stakeholder change proposals, design change

1719.4  Requirement traceability

requests, and product configuration audits. These architectural perspectives (func-
tional and physical architectures) establish the software product design (referred
to as the architectural design), which is distinctly different from the structural unit
programmatic design devised during software implementation. During software
implementation, each structural unit specification is transformed into an explicit
design utilizing computing language–specific constructs. This programmatic design
is utilized to implement software units in computing language instructions that are
particular to the implementation language (e.g., Java, C+). Figure 9.3 shows how
requirements must be traced from stakeholder needs to software implementation
units and components.

It is necessary to establish traceability among the stakeholder needs, software
requirements, architecture, implementation, and test artifacts to enable the develop-
ment teams to be responsive to proposed changes. Traceability provides the ability
to assess the potential impact of proposed changes and is critical to ensuring that
the software development project can achieve its objectives.

9.4.1  Change control
Within a software development project there are formal and informal configuration
management practices that affect the manner in which change requests and propos-
als are processed. To simplify the concept of change control, a change proposal
should be considered for proposed changes that require additional project resources
(costs and schedule) to be incorporated into project and technical plans. Change

Stakeholder neeeds &
Expectations

Software Requirement Baseline
Product Requirement Specification

Interface Requirement Specification(s)

Functional Architecture

Functional
Components

Functional
Components

Functional
Components

Functional
Components

Functional
Components

Functional
Components

Functional
Components

Integrated
Software
Product

(Integrated)
Software

Components

Software
Unit

Physical Architecture

Structural
Unit

Structural
Unit

Structural
Unit

Structural
Components Structural

Components

Integrated
Product Software Integration Strategy Software Implementation

Software Unit Development Folders
• Unit Design Diagrams
• Unit Source Files
• Unit Executable Files
• Unit Test Procedures
• Unit Test Results

Structural
Unit

Structural
Unit

Structural
Unit

Software
Unit

Software
Unit

Software
Unit

Software
Unit

Software
Unit

(Integrated)
Software

Components

Acceptance Testing
Functional Configuration Audit
Physical Configuration Audit

Software Component Integration Folders
• Component Integration Procedures
• Component Test Procedures
• Component Test Results

Functional
Unit

Functional
Unit

Functional
Unit

FIGURE 9.3

Traceability within the software product architecture.

172 CHAPTER 9  Software Requirements Management

requests are design changes that affect the software architecture or implementation
and are considered necessary to achieve specified software requirements.

The project change control board is responsible for authorizing change propos-
als. This mandates that the impact of a proposed change on project and technical
plans be socialized with important stakeholders whom may be impacted by the
change. A technical change impact statement must ensure that the proposed change
can be accommodated within the augmented project cost and schedule resources.
It may be possible to negotiate the elimination or adjustment to other software
requirements if the project cost and schedule objectives are to remain unchanged.

The technical change control board is responsible for authorizing change
requests that are proposed to affect a change in a previously specified element of
the software product architecture. A change request represents suggested modifica-
tions to the software architecture definition that remediate obstacles, complexity, or
obscurity with elements of the software architecture. Change requests should sim-
plify software implementation and test efforts or resolve architectural specification
flaws and imprecision.

9.4.2  Configuration audits
Ultimately, requirements traceability is critical to supporting the functional and
physical configuration audit. The software architecture provides the mapping of the
software product configuration to its implementation, test results, and documenta-
tion artifacts. Configuration audits are performed prior to software deployment or
distribution to confirm that the final software product:

●	 Satisfies the specified software requirements.
●	 Incorporates authorized change proposals and requests.
●	 Is ready for software sustainment with accurate design documentation, opera-

tional manuals, and source files under configuration control.

173Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00010-0

Formulating the Functional
Architecture 10

CHAPTER

CHAPTER OUTLINE

10.1  Motivation for the functional architecture.. 174
10.2  Functional architecture ontology... 176

10.2.1  Functional component...176
10.2.2  Functional unit...177
10.2.3  Data item...177
10.2.4  Functional interface..177
10.2.5  External interface..178
10.2.6  Control structures..178
10.2.7  Resource..178
10.2.8  Data Store..179

10.3  Conceiving the functional architecture.. 179
10.4  Documenting the functional architecture... 181

10.4.1  Functional hierarchy..181
10.4.2  Behavior model...182
10.4.3  Functional timeline...183
10.4.4  Resource utilization profile...183
10.4.5  Functional specifications...184
10.4.6  Requirement allocation sheet...184

This chapter describes the functional architecture and its various forms of repre-
sentation. It also provides guidance by which the functional architecture is derived.
Chapter 11 establishes a set of detailed tasks for the functional analysis and
allocation practice necessary to transform the software requirements specifications
into the functional architecture. The functional architecture provides a basis for
deriving the structural configuration and physical architecture for the software prod-
uct. The physical architecture involves the documentation, drawings, diagrams, etc.
that express the structural configuration of the software product. Among these tasks
are points of departure that identify linkages to other software engineering tasks,
such as requirement verification, software analysis to assess design complexity and
risks, software design synthesis, and architecture control. These links are identified
within the detailed task descriptions provided in Chapter 11.

http://dx.doi.org/10.1016/B978-0-12-407768-3.00010-0

174 CHAPTER 10  Formulating the Functional Architecture

10.1  Motivation for the functional architecture
The functional architecture provides a working view of the software product with
no physical or structural features. It is derived from the operational or business
model from which the software requirements were specified. At the uppermost
layer it identifies the principal software functions that interact with external entities
to describe the software response to external stimuli. The principal functions are
decomposed to provide additional details concerning the data processing services
that the software product must provide. Figure 10.1 addresses the role of the func-
tional architecture as the initial step in the translation of software requirements into
a design for the software product.

The functional architecture expresses the purpose or use of the software product
for which it is to be structurally designed. While the operational model describes
the role of the software product in executing a business or operational process, the
functional architecture explains the data processing actions the software product
must perform. The functional architecture must ultimately be decomposed into ele-
mentary functions that yield a single result when invoked. Elementary functions are
labeled functional units and must be specified to support the structural design of the
software product.

FIGURE 10.1

Role of the functional architecture.

17510.1  Motivation for the functional architecture

The functional analysis and allocation practice provides an approach for trans-
forming software requirements into the functional transactions that the software
product must enable. The functional architecture represents a comprehensive, inte-
grated set of data processing transactions. Functional analysis and allocation is
employed to achieve the following six fundamental design challenges confronting
software product quality.

1.	 Elaborating a solution. The design solution involves many individual software
elements that must work together to support the business or operational process.
This encompasses numerous data processing transactions, services, or threads
of behavior. Software data processing transactions involve many analytical com-
binations and permutations that are difficult to comprehend. Functional analy-
sis provides the means for identifying the myriad of possible data processing
sequences the software must facilitate. The functional analysis and allocation
practice systematically identifies and investigates discrete transactional threads
to completely specify a functional solution.

2.	 Clarifying ambiguity. Language, which is used to communicate and express
requirements, involves imprecise, vague, unclear, ill-defined, inexact, nebulous
words and expressions. Functional analysis ensures that every function is clearly
specified so that no misunderstanding exists in the description of the functional
solution.

3.	 Resolving assumptions. All assumptions must be resolved with stakeholders
before a solution can be finalized. Assumptions that are not challenged and
resolved may result in a software product that does not effectively satisfy cus-
tomer needs and expectations. Functional analysis can be used to speculate
about and evaluate assumptions, thereby eliminating judgment or opinions as
the basis for product design. Functional analysis accentuates the existence of
incomplete or inconclusive information to draw attention to suppositions that
are not substantiated.

4.	 Achieving performance objectives. Specified performance requirements or objec-
tives must be comprehended and the software product designed to achieve these
criteria. Software design techniques, drawings, and models must be utilized that
exhibit software performance characteristics. Performance measures at the soft-
ware product level must be allocated to provide lower-level design aspirations.
Initial performance budgets must be established against which design strategies
can be assessed. Performance requirements can then be allocated and specified
for the design elements once the solution has been appraised to be suitable.

5.	 Determining resource utilization. Data processing efficiency and effectiveness
depends on the regulation of computing resource utilization. The functional
architecture must model resource utilization to permit the design to be opti-
mized for efficient and effective execution. The software design must be sensi-
tive to the impact of resource utilization on performance objectives.

6.	 Simplifying the solution. Complexity is never a desirable characteristic of any
software product. The user interface design and user interactions must not be

176 CHAPTER 10  Formulating the Functional Architecture

convoluted. This will require extensive user training and may dissuade potential
customers from adopting the software product as an institutional standard.
Design complexity directly translates into code intricacy and obscurity.
Software sustainment costs will increase in proportion to the complexity of the
design. The functional architecture provides the initial design paradigm where
complexity can be regulated.

The objective of functional analysis and allocation is to formulate a complete,
consistent, and verified functional architecture that conforms to the specified soft-
ware requirements. The software architecture must identify every data processing
task, including failure detection, remediation actions, and consequential degraded
modes of operation. The functional architecture is complete when every functional
component, unit, and interface has been specified. Functional units and interfaces
are the “building blocks” used to derive the physical architecture for the software
product. The physical architecture identifies and specifies the structural software
elements that will be elaborated (designed, coded, integrated, and tested) during
software implementation. Chapter 12 describes the physical architecture and how it
is derived from the functional architecture.

10.2  Functional architecture ontology
This section identifies the nomenclature used to describe a functional architecture.
According to Dictionary.com, an ontology is “the hierarchical structuring of knowl-
edge about things by subcategorizing them according to their essential qualities.”
Therefore, the following “things” are entities used in describing and documenting
the functional architecture. The labels are not specific to software engineering and
are applicable to describe the functionality of any human-made product.

10.2.1  Functional component
A functional component represents a complex task the software product must per-
form. A functional component is activated when control is transferred to the com-
ponent for execution. Every function transforms one or more data items, in the form
of an input or global or local variables, into an output data item or processed varia-
ble. Functional complexity is apparent when any of the following conditions exists:

●	 A function involves several data transformation actions and at least one action
has no clear, uncomplicated solution.

●	 A function involves distinguishable conditional responses.
●	 A function involves multiple interfaces with other functions or external systems,

users, or other software applications, such as databases.

Functional complexity compels the solution to be further decomposed into less
complex functional components. Decomposition requires that a functional component

17710.2  Functional architecture ontology

be broken down into two or more subfunctions. The designation of a function as a
component indicates that it involves a lower level of functional detail to unambigu-
ously express the manner by which the data processing or transformation is per-
formed. Several layers of decomposition may be necessary to establish a noncomplex
solution.

10.2.2  Functional unit
Functional units represent elements at the lowest level of the hierarchy. A func-
tional unit signifies that no further decomposition is necessary to unambiguously
express the solution. Functional units can be recognized when the design or imple-
mentation of the function can be easily comprehended. Functional units should per-
form a single, noncomplex task; should receive data items as input from a limited
number of sources; and should output data processing results to a limited number of
receiving functions or external elements.

10.2.3  Data item
Data items represent information that must be processed by the software prod-
uct. Data items may be complex in nature and may need to be decomposed to
express the specific data elements involved with the data processing. For exam-
ple, a debit card is encoded with account information that is read by an automated
teller machine’s (ATM) card reader. The initial data item may be generalized as
“account information.” However, it is important to be precise in expressing the vari-
ous pieces of information encoded on the debit card. Typical customer information
may include customer name, card expiration date, bank routing number, checking
account number, and savings account number. Each of these information elements
must be identified as a data item at some level of the functional decomposition to
express the data specification.

Data items involve characteristics that may affect the performance of the soft-
ware product. Data has a size attribute expressing the amount of information repre-
sented by the data item, which may affect storage, retrieval, and transmission rates.
Transmission rates affect the time it takes to transfer a data item between functions,
which is constrained by the computing environment’s internal bus subsystem that
transfers data between components inside a computer or between computers via an
external interface. The capacity of an external interface also affects the transmission
rate of data from the host computing device to external systems.

10.2.4  Functional interface
Data that is exchanged between functions represents a functional interface. A func-
tional interface identifies a requirement for data to be exchanged. The functional
interface provides the initial basis for establishing a functional interface specifi-
cation. It should identify and characterize the data elements being communicated
among the interacting software functions internal to the software product.

178 CHAPTER 10  Formulating the Functional Architecture

10.2.5  External interface
Information that is exchanged between the software product and external systems,
devices, users, or other software applications represents an external interface.
External interfaces should have been specified during the software requirements
analysis and addressed by the functional architecture to support interface design.

10.2.6  Control structures
Control structures provide the means for guiding execution flow to perform a data
processing task accounting for the conditional treatment of data processing inter-
mediate results. From the operational model perspective, control structures repre-
sent business rules or operational procedures that determine how a process should
be executed. Within the functional architecture, control structures represent the
decision or computational logic that determines how the data processing execution
should proceed. The general control structures are as follows:

●	 Branch—a path of execution involving a sequence of data processing tasks or
functions.

●	 Concurrency—enables multiple threads of behavior or branches to be initiated
and executed in parallel.

●	 Selection—enables one thread of behavior to be initiated based on some condi-
tional argument.

●	 Iteration—enables a thread of behavior to be repeated one or more times.
●	 Trigger—activates an action, process, or series of events.

These control structures have comparable constructs implemented by most com-
puter languages. However, for the purposes of establishing the functional architec-
ture, it is not desirable to adhere to the implementation-specific control constructs.
A concurrency is analogous to task synchronization in the Ada and C++ programming
languages. A selection represents an If (If…Goto, If … Then, If … Then … Else)
or Case statements in most programming languages. Iteration represents a loop
mechanism similar to For … Next, Do While, Do Until, or ForEach (collection
control loop) in most programming languages.

10.2.7  Resource
A resource represents any quantifiable entity of which the availability may impact the
performance of the software product. Resource utilization influences the performance
assessment of the software product and typically involves a dynamic random behav-
ior. Resources can be used to understand the computing environment characteristics
that affect execution timing, or other assets that impede data processing effectiveness.
Resources have several characteristics that affect software performance:

●	 Inventory capacity. The volumetric quantity that identifies the maximum num-
ber of units that can be present at any time.

17910.3  Conceiving the functional architecture

●	 Inventory stock. The amount of a resource that is available to the support data
processing needs of the software product.

●	 Amount consumed. Functions may consume a resource drawing down the inventory
stock, thereby reducing the amount of the resource available to other functions.
Functions may replenish a resource representing the restocking of the inventory.

●	 Amount capture. A function may acquire a reuseable resource to support its
execution and release the resource when the function has finished executing.

●	 Resupply amount. The amount of a consumable resource that is replenished by
a function.

10.2.8  Data Store
A data store is a repository that retains digital data and supports data preservation
or persistence. Data stores support data storage and retrieval functions that involve
transactions to search and manipulate data records. Issues surrounding data store
transactions that affect software performance include data store availability, trans-
action processing and rollback, data model definition, data security and access con-
trol, and database query optimization.

10.3  Conceiving the functional architecture
The functional architecture involves answering the question, “What functions
(data processing tasks) must the software product perform to satisfy the specified
software requirements?” This is a process of exploring the solution space from
available information without addressing the structural arrangement of modules,
subroutines, objects, or other physical forms of software delineation. This should
be achieved by establishing successive layers of refinement or decomposition of
functional, data, and control flows, which results in two necessary perspectives: the
functional hierarchy and the behavioral models.

The behavioral model provides a more precise description of the software func-
tionality than the functional hierarchy. Complex functions identified in the behav-
ioral model should be decomposed into individual models that describe how each
function should be performed. The decomposition of functions from a behavioral
perspective can be used to generate the functional hierarchy. However, it is not nec-
essary to begin functional analysis activity with the behavioral modeling practice.
Functions derived from the software requirements can be methodically decom-
posed to create the functional hierarchy before analyzing functional behaviors. The
two practices—decomposition and behavioral modeling—are complementary and
should be applied to explicitly describe the functional solution.

The approach to preparing the functional architecture involves five steps:

1.	 Derive the primary functions. The software requirements must be analyzed to
identify the primary functions the software product must perform. Since the

180 CHAPTER 10  Formulating the Functional Architecture

software requirements describe the software product from an operational or
business process perspective, the identification of primary functions may not
correspond to or coincide with the requirements. This may be reflective of the
terminology used to describe the operational or business process. The software
requirements must be translated into software functions that reflect semantics
associated with the appropriate software domain. A software domain reflects a
field of study that defines a set of common requirements, terminology, and func-
tionality for any software program constructed to solve a problem in that field.

2.	 Decompose primary functions. The primary functions can be assumed to be
complex since they have been derived from the operational or business process
descriptions. Each complex function represents a software task of which the
solution is too extensive or challenging to comprehend. Functional decom-
position involves reducing complexity by investigating the problem space to
improve the understanding from which a design solution can be conceived.
●	 Functional decomposition. Functional decomposition identifies the proce-

dural operations by which a complex function will be performed. In most
cases, there are multiple approaches by which a complex function can be
accomplished, and each design approach or alternative will exhibit different
performance and architectural quality characteristics.

●	 Model functional behaviors. Construct a model of how the function behaves
by identifying the functional sequences, data items, and control mechanism
necessary to perform the source function. The performance characteristics
and resource utilization criteria specified for the source function must be
budgeted or allocated among subfunctions.

●	 Evaluate alternative approaches. Every functional decomposition or behav-
ioral model involves design alternatives. Contending alternatives should
utilize the software analysis activity to evaluate, prioritize, and select a pre-
ferred solution. Each solution should be assessed to understand its effective-
ness, suitability, and risks in terms of satisfying the specified performance
requirements and desired software quality characteristics.

●	 Identify implied behaviors. Functional solutions should be evaluated to iden-
tify inferred, complementary, or supplementary behaviors that enhance the
data processing thoroughness. It should be assumed that the specification is
incomplete and has converged on a suitable expression of the data process-
ing actions. The functional solution must be meticulously evaluated to iden-
tify behaviors needed to contend with every possible situation that may arise
during data processing.

●	 Optimize the functional solution. The functional solution should be evaluated
to identify aspects that have the largest influence on software performance
and resource utilization. Important aspects of the initial functional solution
should be refined to increase the effectiveness of the solution, such as data
integrity, possible causes of failure conditions, input/output data item defini-
tions, and the precision of data transformation algorithms.

18110.4  Documenting the functional architecture

3.	 Specify the solution. The elements of the functional solution resulting from
the decomposition of a complex function must be specified. The requirements
for each element must establish the performance and resource utilization objec-
tives for each subfunction. Data persistence transaction characteristics, failure
detection and recovery actions, and data item properties must be quantified.
Specification of the functional solution provides the basis for further decom-
position, behavioral analysis, and specification of the remaining complex
functions.

4.	 Assess functional complexity. The functional solution must be assessed to deter-
mine if further functional analysis and allocation is necessary.
●	 If a function is determined to be complicated, then repeat steps 2 and 3 for

each complex function.
●	 If a function is determined to be noncomplex, then its specifications and

hierarchical and behavioral diagrams must be placed under technical con-
figuration control.

5.	 Simplify the functional architecture. As the functional architecture evolves, it
is prudent to review the functional configuration to identify opportunities by
which the architecture can be simplified.

10.4  Documenting the functional architecture
The functional architecture involves a set of software engineering artifacts
(diagrams, models, and specifications) that must be prepared to document the func-
tional architecture. While many software methodologies prescribe a wide variety
of diagrams, the number of fragmented representations fails to provide a complete,
cohesive view of the software architecture. This challenges the ability of stakehold-
ers and members of the software development effort to perceive the “wholeness” of
the solution.

Two principle representations of the functional architecture are necessary to
express the entirety of the solution: functional hierarchy and behavioral model.
In addition, there are four additional representations that support the analysis and
specification of the functional solution: functional timeline, resource utilization
profile, functional specifications, and requirement allocation sheets. The following
subsections describe each of these engineering artifacts in terms of its purpose and
features.

10.4.1  Functional hierarchy
The functional hierarchy conveys the transformation of software specifications into
the essential functions (functional units) that the software product must perform to
execute the operational or business processes. It provides traceability of the soft-
ware requirements to the initial software product design configuration.

182 CHAPTER 10  Formulating the Functional Architecture

The functional hierarchy provides a gage of the software product complexity in
three manners:

●	 The number of levels of decomposition.
●	 The breadth of each level of decomposition.
●	 The number of fundamental functional elements (functional units) from which

the structural design is to be derived.

The number of levels of decomposition will not be consistent throughout the
functional hierarchy. The number of layers involved with the decomposition of
a primary function is a good indication of the complexity of the data processing
transaction being executed. The breadth of each level of decomposition implies the
complexity that will be encountered during software component integration and test-
ing. The number of functional units provides an initial indication of the scope of the
software unit design, code, and testing activity. However, this indicator will be firmly
established as a result of the software design synthesis activity. During software
design synthesis, common or closely coupled functional units may be combined into
a single structural unit, thereby reducing the anticipated workload for software unit
design, coding, and testing.

10.4.2  Behavior model
The behavior model provides decisive information that supports the specification
of functional components and units. It expresses a complete, precise representation
of the software behavior in a notation that eliminates conjecture, assumptions, or
speculation. The behavior model may be a static or dynamic model of the software
product execution of data processing transactions and identifies the responses to
potential data transformation results, operator errors, and hardware malfunctions.

The behavior model is essential to the software engineering activity because it
provides an unambiguous expression of the various data processing transactions
that must be performed. The behavior model forms the basis for software design,
enabling design alternatives to be evaluated and resolved. It provides the design
framework from which the functional timeline and resource utilization profile are
formulated. The functional behavior model describes the:

●	 Sequence of functions that must be performed (functional flow).
●	 Data flow among the software product and external systems, applications, or

operators (data flow).
●	 Data flow among functions or functional interfaces (data flow).
●	 Business rules or control logic that determine the execution flow among condi-

tional functional sequences (control flow).
●	 Resources necessary to accomplish each function (resource utilization).

Control logic can be associated with the result of a function and is modeled as a
function that terminates with a selection among multiple functional flow sequences.
The selection of which behavioral path to proceed to execute may be deterministic

18310.4  Documenting the functional architecture

to force the selection of a desired sequence, or probabilistic to randomly select a
sequence to execute. The behavioral model may include a probability distribution
equation to represent the random selection. The following is a list of common prob-
ability distribution functions:

●	 Bernoulli distribution
●	 Binomial distribution
●	 Uniform (discrete) distribution
●	 Poisson binomial distribution
●	 Geometric distribution
●	 Logarithmic distribution
●	 Exponential distribution
●	 Pareto distribution
●	 Chi-square distribution
●	 Weibull distribution

An executable behavior model can be utilized to support design trade-off
analysis, an element of the software analysis practice (see Chapter 14). Rather than
relying on abstract diagrams, an executable model provides a working prototype of
the software product. Competing design alternatives can be compared to determine
which design approach performs best under anticipated operational conditions. A
Monte Carlo simulation can be achieved by enclosing the model in a looping con-
trol structure and conducting repeated analysis of functional timing and resource
utilization. This enables the probabilistic identification of critical paths through the
model that can be used to guide the development of software test cases. The execut-
able model also is valuable in verifying that the functional architecture satisfies the
specified software requirements.

10.4.3  Functional timeline
The functional timeline provides an assessment of the time required to execute
each operational scenario or behavioral thread. The timeline depicts the duration
for every action that occurs during execution and enables the analysis of time-
critical design requirements. Variability of execution duration can be provided
with the generation of random outcomes that affect business rules or control logic.
Execution timeline analysis is used to determine if the software performance will
satisfy the specified requirements and can highlight behavioral deficiencies with
the current functional architecture. Trade-off analysis can be used to mitigate soft-
ware performance impediments and resolve resource contention issues that result in
deadlock or thrashing situations.

10.4.4  Resource utilization profile
The resource utilization profile depicts the percentage of a resource that is actu-
ally occupied, as compared with the total time that the component is available for

184 CHAPTER 10  Formulating the Functional Architecture

use. Resource availability may have significant impact on the performance of the
software product during peak load situations. The availability of a resource can be
assessed to be restrictive if it is overused and impacts transaction processing. These
results may be used to modify the software functional architecture or to modify the
computing environment definition to enhance resource availability.

10.4.5  Functional specifications
A specification must be developed for each functional component and unit. These
specifications provide the traceability among elements in the functional hierarchy
to the specified software requirements. The functional unit specifications are uti-
lized during software design synthesis to establish structural unit specification
(see Chapter 13). A fundamental principle of engineering is the specification of every
part or component involved in the design of the product. Functional specifications
are also necessary to support software reusability. The selection of reusable software
components is predicated on how well a commercially available (commercial off the
shelf, COTS) or previously developed (nondevelopmental item, NDI) software com-
ponent satisfies the required functionality and performance.

10.4.6  Requirement allocation sheet
The requirements allocation sheet (RAS) identifies the elements of the software
architecture and computing environment that contribute to the achievement of
software requirements. The RAS provides the detailed information concerning the
manner in which the software functions, coupled with the computing environment
characteristics, satisfy the specified software requirements. It provides traceability
to trade-study results and design decision memorandums from which the resulting
allocation was derived. The RAS must be aligned with the requirements traceabil-
ity matrix, which provides additional traceability among the software engineering
design artifacts for each software requirement.

185Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00011-2

Functional Analysis and
Allocation Practice 11

CHAPTER

CHAPTER OUTLINE

11.1  Assess functional complexity.. 187
11.2  Behavioral analysis.. 189

11.2.1   Identify functional scenarios...190
11.2.2   Identify functional sequences...190
11.2.3   Identify data flows...191
11.2.4   Identify control behaviors...192
11.2.5   Identify data processing procedures..193
11.2.6   Identify resource prerequisites..194
11.2.7   Identify failure conditions...194
11.2.8   Identify systems monitoring procedures.......................................196
11.2.9   Identify data retention capacity requirements...............................197
11.2.10 Identify data security procedures..197
11.2.11 Identify data persistence and retention functions..........................197

11.3  Performance allocation.. 198
11.3.1   Allocate performance budgets...199
11.3.2   Allocate resource budgets...199

11.4  Architectural assessment... 200
11.4.1   Assess requirement fulfillment..200
11.4.2   Assess software performance..200
11.4.3   Assess architectural complexity...200
11.4.4   Assess optimization opportunities...200

11.5  Establish the functional architecture... 200

Functional analysis and allocation is the practice that transforms the software
requirements into a functional architecture. Functional analysis is the first step in
exploring the customers’ problem domain and deriving a design solution. The oper-
ational activities assigned to the software product represent complex functions that
need to be decomposed for which a structural design solution is pursued. The func-
tional analysis technique involves the following fundamental tasks:

1.	 Complexity analysis—evaluation of a function to determine if it warrants further
simplification by decomposing the function into subfunctions. The decomposi-
tion of a function results in the identification of smaller, less-complex functions

http://dx.doi.org/10.1016/B978-0-12-407768-3.00011-2

186 CHAPTER 11  Functional Analysis and Allocation Practice

for which a design solution can be unambiguously distinguished. The result of
the functional decomposition is a functional hierarchy that depicts the manner in
which complex functions have been simplified, clarified, and specified.

2.	 Behavioral analysis—involves an integrated modeling approach to postulate
how the software product will execute a sequence of functions to perform opera-
tional transactions or data processing actions. Behavioral analysis results in
integrated behavioral models that involve functional flows, control flows, data
flows, and resource utilization.

3.	 Performance allocation—allocates software performance requirements among
the functional elements of the behavioral model and computing environment.
Software product performance is reliant on the computing environment perfor-
mance characteristics that may need to be augmented as a result of the func-
tional analysis activity.

4.	 Architectural assessment—review of the evolving functional architecture to
ensure that the software requirements are being satisfied, the projected software
performance will tolerate anticipated utilization loads, and the functional archi-
tecture is noncomplex and will facilitate product sustainment and enhancement
throughout its life cycle.

The functional behavior model represents the decomposition of the operational
model with a focus on comprehending the software product’s functional and per-
formance qualities. The behavior model is derived to explicitly specify the software
response to a variety of stimuli and inputs. As the software behaviors are explored,
the specified software requirements may need to be revised to reflect the level of
performance that can be achieved given the limitation of the computing environ-
ment. Behavioral alternatives should be investigated before embracing a solution
with which to proceed into design synthesis. Competing alternatives should be eval-
uated via trade-off analysis and risk assessments to aid the selection of the optimal
alternative in terms of life-cycle costs, risks, and performance.

Functional analysis identifies data processing operations or what the software
product is expected to do to support the operational or business process. Functional
analysis should not impose structural design or implementation details. This
implies that it is not necessary to completely specify computational constructs,
data structures, or resource characteristics. The software design synthesis practice
establishes the structural composition, arrangement, and design specifications for
the elements of the physical architecture. Software design synthesis configures the
physical architecture that identifies how the software product will be structured to
provide the specified functionality.

The approach to functional analysis and allocation described in this chapter
has been adapted from the systems engineering discipline. It has been modified
to address the unique challenges associated with the design of software products
independent of the implementation language. However, key software implementa-
tion personnel should participate in the functional analysis activity to ensure that
the functional architecture can be realized given the implementation language con-
straints. Figure 11.1 depicts the tasks that contribute to software functional analysis
and allocation.

18711.1  Assess functional complexity

11.1  Assess functional complexity
Functional analysis and allocation is performed at every level of the functional
architecture. The initial set of functions that form the top layer of the functional hier-
archy are derived from the specified software requirements or operational model.

FIGURE 11.1

Functional analysis and allocation tasks.

188 CHAPTER 11  Functional Analysis and Allocation Practice

These functions should represent the primary functions that the software product
must perform. However, it may be desirable to group and organize these functions
around a software operational concept that involves some form of initial user iden-
tification and authentication or software application initiation and presentation of
the home graphical user interface. At this level, every function should be considered
complex since they are at the business process or operational level of abstraction.

The complexity of every function must be assessed to determine if it necessi-
tates further decomposition to provide an uncomplicated, unambiguous functional
depiction. Functional complexity may be recognized when any of the following
conditions are evident:

●	 The behavior of a function requires further clarification to describe the transfor-
mation of inputs into the desired output or response.

●	 Multiple approaches to providing the functionality can be conceptualized and
the most advantageous approach must be determined.

●	 A function involves business rules or control logic that are ambiguous or
nebulous.

●	 A function involves accessing multiple data storage or retrieval transactions.
●	 A function involves inputs from multiple sources, such as users, external sys-

tems, or other functions.

Functions that require further decomposition are labeled functional components.
The remainder of the functional analysis and allocation tasks should be performed to:

●	 Define the behaviors of functional components.
●	 Allocate software performance characteristics among functional components

and units.
●	 Assess the suitability and completeness of the functional architecture.
●	 Specify the design requirements for every element of the functional architecture.

As a rule of thumb, functional analysis continues until a function is recognized of
which the implementation is noncomplex and its behavior can be specified without
further investigation. These noncomplex functional elements are labeled functional
units and represent the fundamental features from which the physical architecture
will be configured. The number of levels of decomposition will vary throughout the
functional hierarchy due to the uneven complexity associated with a functional prob-
lem and its solution. It is not necessary to strive to have a uniform leveling through-
out the functional hierarchy. The intent is to ensure that the behavior of each function
is well understood and that each functional unit can be unambiguously specified and
implemented. Several guidelines apply to functional decomposition:

1.	 A function cannot be decomposed into a single function. Decomposition war-
rants the identification of at least two subfunctions.

2.	 The need for further decomposition is driven by functional complexity, and
therefore the functional hierarchy will not be horizontally symmetrical or verti-
cally consistent in depth.

18911.2  Behavioral analysis

3.	 No further decomposition is necessary when a function’s design solution can be
comprehended or exists as a reusable software module.

4.	 Functions that involve several data transformation steps may not require further
decomposition if the design solution is considered manageable.

5.	 If a function involves data transformation steps that are common with other
functions, then decomposing the function represents an opportunity for estab-
lishing common subroutines that can reduce software complexity by eliminating
duplication.

6.	 Avoid identifying a function that generates more than one output or product.
With some deliberation it should be possible to identify an abstract function
which can then be decomposed into subfunctions which generate alternative
outputs or products.

11.2  Behavioral analysis
Behavioral analysis involves a set of tasks that are intended to fully explore the
functional solution space. The objective is to describe how the software product
must respond to user inputs or computing environment state change or failure con-
ditions. Behavioral analysis tasks construct functional design models of data pro-
cessing transactions. The intent is to explicitly design how each transaction will be
conducted, including any possible error condition or computing environment failure
or degraded mode of operation.

The behavior model depicts how a complex function will be executed. The
behavior of the software product must be specified in sufficient detail to unam-
biguously express how each function will be performed to enable the operational
process to be accomplished. The behavior modeling technique may produce static
(nonexecutable) or dynamic (executable) models. Dynamic models are preferred
since they provide an analytical verification of the design adequacy and may be
used to support trade-off analysis. Therefore, the behavior model must address the
following elements:

1.	 Organizations or actors—the business or operational organizations or personnel
roles that interact with the software product.

2.	 External systems—the elements of the computing environment, external sys-
tems, and other software applications that interface with the software product.

3.	 Data stores—the abstract data repositories that support data storage and
retrieval transactions.

4.	 Functional sequences—the sequential flow of data processing actions. Parallel
threads of behavior can be used to model concurrency or conditional execution
(selection of execution flow based on business or control rules) of functional
sequences (see task 11.2.2).

5.	 Data items—the information elements that represent inputs and outputs of func-
tions (see task 11.2.3).

190 CHAPTER 11  Functional Analysis and Allocation Practice

6.	 Control mechanisms—the enforcement of business or control rules to
decide which conditional branch is to be executed. Loops provide a control
mechanism that causes a segment of the functional sequence to be reexecuted
one or more times. (Note: A loop may be continuous (neverending) or termi-
nated based on the achievement of a conditional criteria (e.g., Do…Until))
(see task 11.2.4).

7.	 Computing resources—the consumable or reusable assets provided by the com-
puting environment, such as memory, data storage, and communication interface
bandwidth (see task 11.2.6).

11.2.1  Identify functional scenarios
The software products support many operational scenarios that should have been
identified by the software requirements specification. The functional scenarios rep-
resent abstract sequences of data processing actions that are necessary to enable the
software product to facilitate the business or operational process. Each operational
scenario should be evaluated to identify the assortment of functional scenarios that
must be designed for. For example, an automated teller machine (ATM) supports
several distinct banking (business) transactions. Each banking transaction must be
evaluated to identify the various situations that would trigger a separate functional
scenario. These situations include: (1) the bank account is inactive due to customer
closure, (2) the bank account is suspended due to inappropriate account activity, (3)
the bank account contains insufficient funds to support the requested transaction,
and (4) the bank account has sufficient funds to support the requested transaction.
Each of these situations represents a functional scenario the software product must
be designed to support.

11.2.2  Identify functional sequences
Each of the functional scenarios must be expressed in terms of the sequence of
functional actions that are necessary to accomplish the scenario. The functional
sequence is represented by a functional flow block diagram (FFBD). If further
situations warrant the identification of alternative functional solutions, then the
sequence should branch into multiple sequences. The control rules and criteria for
each alternative branch must be specified.

The FFBD notation is a proven technique for depicting a sequence of func-
tional actions. However, it may need to be enhanced to permit the expression of
control rules and alternative branching within the sequence of functions. It is neces-
sary to express the control decision logic and branch selection criteria as an integral
description of the functional flow sequence diagram. An example of a simple FFBD
is presented in Figure 11.2 to depict the decomposition of the process application
operational activity identified in Figure 8.3 in Chapter 8.

19111.2  Behavioral analysis

11.2.3  Identify data flows
The purpose of most software functions is to transform inputs into an output or
product. However, some functions will receive control flow instead of an input.
Examples of functions that receive only control flow include: (1) the action to pre-
sent graphical user informational screens, messages, or dialog screens; (2) take
action on global data values; and (3) take action when a state variable (e.g., com-
puting environment health indication or software procedural status) has changed
or needs to be assessed (e.g., obtain the status of the default printer). While func-
tions that do not directly process data may not satisfy computer language specific or
mathematical criteria, they do perform significant actions within the software engi-
neering field of study.

Data items represent the information that flows among functions. The pass-
ing of data between software functions represents a functional interface, such as a
subroutine invocation or “call” statement. The controlling function passes a vari-
able to another function that is processed and the result returned to the controlling
function. For example, a function may invoke a temperature conversion function
by passing a temperature value in Fahrenheit. The receiving function converts
the Fahrenheit temperature value to Celsius and returns the resulting value to the

FIGURE 11.2

Example of an FFBD.

192 CHAPTER 11  Functional Analysis and Allocation Practice

controlling function. The functional interface represents the mechanism for achiev-
ing encapsulation, the object-oriented approach to information hiding.

The passing of data between a software function and an external application or
system represents a software interface that is specified by a software interface spec-
ification. Therefore, the functional architecture must identify these external applica-
tions or systems outside the boundary of the functional architecture to reflect the
software interface. Software interfaces represent a multiparty contract that must be
conformed to as it pertains to the definition of the interface design and implementa-
tion characteristics.

Global data items represent data that is accessible to any function. This type
of data item does not represent a data flow due to the “global” availability of the
parametric value. The global data value is available to all functions within the soft-
ware architecture. Local data items represent variable or constant parameters that
are declared internal to a function and not accessible to other functions. Therefore,
access to local data items does not represent a data flow.

The data flow diagram has been used to represent a data-centric view of the
software data processing transactions. It represents the data items as the pri-
mary elements of interests and the functions as the connectors or transformation
agents between data item states. The behavior model combines the functional flow
sequences with the data flows to provide a more general and complete representation
of the software data processing scenarios. A software data dictionary (nomenclature
document) must be produced to ensure that each data item is uniquely identified and
their characterization is available to all members of the software development team.

11.2.4  Identify control behaviors
The control behaviors must be identified to disclose the decision logic and crite-
ria that govern data processing control flows. Control behaviors must account for
all possible conditions that may be encountered throughout a functional scenario.
Control behaviors dictate which functional sequence will be enabled among the
possible courses of action. For example, when a loan application is being evaluated
by a bank officer, the loan may be approved, disapproved, or deferred until further
information is provided. The operational or business model should have identified
the business rules that guide this transaction. The control behaviors must identify
how the software will interrogate data items to enforce the business rules.

The control behaviors represent the decision logic that must be captured at a
detailed level so that the software development team understands the precise nature
of how data processing control flow choices will be affected and the selection cri-
teria that govern which branch of functional execution to enable. The following are
typical control logic constructs used to describe control behaviors:

AND—used to describe a parallel condition where two or more sequences of
data processing functional behavior (branches or processes) are executed
concurrently.

19311.2  Behavioral analysis

OR—used to describe a selection condition where only one sequence of func-
tional behavior will be performed. The logical path of execution is determined
by the state of data item or resource and the conditional selection criteria.
LOOP—used to repeat a sequence of functional behaviors until a condition is met
that terminates the repetitive behavior, and the subsequent function in sequence
beyond the LOOP is executed.
LOOP EXIT—used to evaluate if the condition has been satisfied to cause the
LOOP behavior to terminate.
ITERATE—similar to a LOOP, used to repeat a sequence of functional behav-
iors a specified number of times. When the specified number of iterations has
be achieved, the looping behavior terminates, and the subsequent function in
sequence beyond the ITERATE is executed.

11.2.5  Identify data processing procedures
Each function must be specified by identifying the data transformation procedures
necessary to transform inputs into the desired outputs, response messages, or state
information. Response information pertains to situational awareness concerning
issues encountered during data processing, such as data record not found or input data
out of range. State information pertains to internal variables that represent the status
of a transaction or computing environment asset. The data processing procedures
should address the algorithms or computational logic by which the desired outputs
are generated.

It is not sufficient to verbally describe the data processing procedures to be per-
formed. The procedures should establish the transformational sequence of steps
that must be accomplished to execute the function. For example, the ATM personal
identification number (PIN) verification function may involve the following trans-
formational steps:

1.	 Format the PIN verification request message.
2.	 Transmit the PIN verification request message to the central bank account man-

agement system.
3.	 Receive the verification response form the central bank account management

system.
4.	 Establish the PIN verification success or failure.
5.	 Notify the customer of the PIN verification results by one of the following:

●	 Display customer welcome ccreen.
●	 Display incorrect PIN notification screen and request the customer to reenter

a PIN or cancel the transaction.

The complexity of the data processing procedures should be reassessed (per
task 11.1, assess functional complexity) to determine if further functional decom-
position is warranted. The challenge of the functional complexity assessment is
to determine whether the data processing procedures represent an uncomplicated,

194 CHAPTER 11  Functional Analysis and Allocation Practice

straightforward action that can be satisfactorily designed, implemented, and tested
by a competent software professional.

11.2.6  Identify resource prerequisites
The resources that are necessary for each function to execute must be identified.
A resource represents an item that enables a function to be performed properly.
When a resource is unavailable, the data processing transactions may be suspended,
delayed until the resource is made available, or performed inefficiently. Resources
can be thought of as the computing resources or intermediary data items that need
to be present for the function to fulfill its purpose.

There are two types of resources that must be addressed to support behavio-
ral analysis. The first type of resource is one that is consumable. A resource that
is consumed represents an inventory stock that may be incrementally utilized until
the inventory is empty or of insufficient quantity to support further data processing
actions. A function that requires a consumable resource must wait until the inventory
stock has been replenished before it can be executed. An example of a consumable
resource is a printer with its paper supply. As long as there is paper available within
the tray, the printing function can be performed. However, when the paper supply is
empty, the printing function is suspended until the paper supply is restocked.

The second type of resource represents a reusable item, such as memory. Each
function is loaded into memory for execution, and unloaded from memory when
the function is no longer necessary to be resident in memory. The amount of mem-
ory is fixed and is temporarily decremented by the amount consumed by resident
functions. When a function is removed from memory it frees up space for other
functions that may require the memory for execution purposes. Understanding the
amount of available memory at any point in time is crucial to software performance
and is dictated by the computer’s memory management scheme.

Resource utilization is a critical aspect of overall software performance.
The time associated with resource management and delays imposed by limited
resources may adversely affect processing time. Therefore, resource allocation and
management contribute directly to the establishment of a functional architecture
that satisfies stringent performance requirements. Therefore, task 11.3.2, allocate
resource budgets, involves an assessment of the functional resource availability and
utilization and management scheme, and establishes the approach to software per-
formance requirements allocation among elements of the functional architecture.

11.2.7  Identify failure conditions
Every functional transaction must be evaluated to identify situations or conditions
that may cause failure conditions. Identified failure states must be resolved by stip-
ulating the data integrity criterion that must be interrogated to determine a failure
state, and the actions to be taken when a certain state arises to complete the data
processing transaction.

19511.2  Behavioral analysis

Some failure conditions may result in a state that cannot be resolved via auto-
mation and requires human intervention. The functional analysis effort must then
address the manner by which the software will continue to operate in a degraded
mode, if possible. For example, if an ATM’s supply of money has been depleted,
then the withdrawal function must be temporarily suspended until the money supply
if restocked. The software functions for detecting failure conditions and operating in
a degraded mode must be included within the functional architecture. This includes
identifying how the software product can be “informed” of the current state of data
processing or system resources and how the state indicators are managed.

Potential data processing failure modes and effects must be analyzed to deter-
mine how the software product should behave in response to each failure condi-
tion. Failure modes and effects analysis (FMEA) is an engineering procedure that
enables the design team to classify potential failure modes by the severity (con-
sequences) and likelihood of the failures resulting with improved product quality
and dependability. Dependability is a term that is better suited for software prod-
ucts than reliability. Throughout the engineering community, reliability deals with
predicting the mean time between failure (MTBF) of hardware components during
normal operation and provides an estimate of the expected duration life expectancy
for the component. Software does not breakdown or wear out over time with use.
Therefore, dependability refers to a software component’s ability to perform its
function as expected under all circumstances. Dependability is a more suitable term
to be used for software products due to the nature of the material of which it is
comprised. If a software component fails, it is due to the software design inability
to be resilient to unexpected circumstances or situations.

Software FMEA should be used to identify potential failure modes, determine
their effects on the operation of the system or business process, and design response
mechanisms that prevent the failure from occurring or mitigate the impact of the
failure on operational performance. While anticipating every failure mode may not
be possible, the development team should formulate an extensive list of potential
failure modes in the following manner:

1.	 Develop software product requirements that minimize the likelihood of potential
operational failures from arising.

2.	 Evaluate the requirements obtained from stakeholders in the software perfor-
mance and post-development processes to ensure that those requirements do not
introduce complicated failure conditions or situations.

3.	 Identify design characteristics that contribute to failure detection and minimize
failure propagation throughout a data processing transaction.

4.	 Develop software test scenarios and procedures designed to exercise the soft-
ware behaviors associated with failure detection, isolation, and recovery.

5.	 Identify, track, and manage potential design risks to ensure that product depend-
ability is predictable and substantiated via the software test effort

6.	 Ensure that any failures that could occur will not result in personal injury or
seriously impact the operation of the system or operational processes.

196 CHAPTER 11  Functional Analysis and Allocation Practice

Properly used, the software FMEA provides the development team several
benefits, including:

1.	 Improved software dependability and quality.
2.	 Increased customer and stakeholder satisfaction.
3.	 Identifies and eliminates potential software failure modes early in the develop-

ment process when such design challenges can be cost-effectively regulated.
4.	 Emphasized failure detection and preventive measures.
5.	 Provides a focus for improved software test coverage.
6.	 Minimizes late design changes and their associated cost and schedule impacts.
7.	 Improves teamwork and idea exchange among development team members.

A complete FMEA for a software product should contend with failures arising from
the computing environment hardware, external systems, and data processing trans-
actions, and their effects on the final system or operational processes. The software
FMEA procedures should adhere to the following steps, adapted from IEC 608121:

1.	 Define the software boundaries for analysis (accomplished during computa-
tional requirements analysis).

2.	 Understand the software requirements, functionality, and performance.
3.	 Develop the functional architecture representations (hierarchical decomposition

and behavioral views).
4.	 Identify functional failure modes and summarize failure effects.
5.	 Develop criteria for successful failure detection, isolation, and recovery.
6.	 Report findings.

11.2.8  Identify systems monitoring procedures
If the software product involves control or monitoring of mechanical or other types
of equipment, then the software FMEA should have identified the situations that
must be regulated. The systems monitoring, status notification, and corrective
action functionality must be identified. The systems monitoring and control behav-
iors should be highlighted throughout the behavioral model and functional hierar-
chy so that they may be emphasized during software implementation and testing.
As the software architecture evolves, changes to systems monitoring and control
behaviors should be evaluated thoroughly due to the important nature of these
functions.

The systems states must be identified and the periodicity of software monitor-
ing functions specified. The behaviors associated with the software response to sys-
tems state changes must be incorporated into the functional architecture. Real-time
or near-real-time monitoring should provide for detection of the health status of
the systems and establish the software response to a degraded system’s operational

1 Analysis Techniques for Systems Reliability—Procedure for Failure Mode and Effects Analysis
(FMEA), International Electrotechnical Commission, Jan. 25, 2006.

19711.2  Behavioral analysis

situations. Safety-critical systems state changes must be modeled or prototyped to
ensure that the software properly detects and executes corrective actions necessary
to properly safeguard systems operational conditions.

11.2.9  Identify data retention capacity requirements
The data storage capacity requirements for long-term data retention records must
be specified. The operational or business model should be evaluated to determine
the anticipated most-excessive amount of data records that would need to be sup-
ported for a given time period. Operational projections should be used to determine
the periodic demand for data storage capacity. Factors that must be considered
when preforming capacity planning are location of data storage facilities, data
record retention duration, recovery of deleted data record storage space, and peri-
odic demand for new data record creation. The data retention capacity requirements
will affect the software interaction with a database management system, as well as
directly impact the configuration of the computing environment.

11.2.10  Identify data security procedures
Data security functions and procedures must be identified that protect confiden-
tial or classified information. Information security is a profession that addresses
a broader range of computer security and information assurance challenges. Data
security represents a subset of the information security capabilities that will be per-
formed by the software product. Information security means protecting informa-
tion and information systems from unauthorized access, use, disclosure, disruption,
modification, perusal, inspection, recording, or destruction. Software engineering
involves the establishment of logical controls that monitor and regulate access to
sensitive (confidential or classified) information. Information security functions
must be identified and the appropriate procedures defined for:

●	 Access control, including user account administration, identification, authentica-
tion, and authorization. Access control protects information by restricting the
individuals who are authorized to access sensitive information.

●	 Information security classification, involving the identification of different data
classification levels, the criteria for data to be assigned a particular level, and the
required controls to govern the access to each level of sensitive information.

●	 Cryptography, including information encryption and decryption.

11.2.11  Identify data persistence and retention functions
The data elements must be evaluated to identify requirements for temporary trans-
action persistence and long-term retention. Temporary data persistence is needed
if there is an intention to capture the state of a transaction to support undoing or
reversing transaction steps to return the operational state to a previous condition.
Long-term retention is needed when historical records must be maintained to

198 CHAPTER 11  Functional Analysis and Allocation Practice

support transaction recordkeeping, statistical analysis, or other business functions.
Data persistence and retention requirements must be specified to support the defini-
tion of the data retention mechanisms needed to support the software operations.

Additional functions should be integrated into the behavioral model and
functional hierarchy that address the need for data persistence actions. Data storage
and retrieval transactions may need to handle database reliability issues, data veri-
fication procedures, or possible transaction deadlock situations. As the functional
architecture matures, data storage and retrieval functions may be grouped, speci-
fied, and documented in a database transaction document. A database transaction
block diagram should identify the data records, data types, and definitions that are
necessary to the design of a database to support the operational or business data
retention requirements.

11.3  Performance allocation
It is imperative that the software performance requirements be allocated among the
elements of the functional architecture. This allocation must address the duration
of each software function, and the accuracy and precision associated with math-
ematical calculations. The software functional performance should only address the
execution time associated with carrying out software tasks. The performance asso-
ciated with user input and output and interfacing with external systems and other
software products should be included in the determination of the performance of
the operational or business process.

Software performance is dependent on the execution of the computing technol-
ogy and the availability of adequate hardware resources. Performance bottlenecks
may arise when access to shared resources becomes contentious and delay func-
tional execution or extend the time for a function to be performed.

A bottleneck is a phenomenon where the performance or capacity of an entire
system is limited by a single or limited number of components or resources.
The term bottleneck is taken from the “assets are water” metaphor. As water is
poured out of a bottle, the rate of outflow is limited by the width of the con-
duit of exit—that is, bottleneck. By increasing the width of the bottleneck one can
increase the rate at which the water flows out of the neck at different frequencies.
Such limiting components of a system are sometimes referred to as bottleneck
points.2

Therefore, software performance requirements must be allocated among the ele-
ments of the functional architecture. This involves addressing software execution
or timing, as well as resource utilization to avoid resource-imposed performance
degradation.

2 See http://en.wikipedia.org/wiki/Bottleneck

http://en.wikipedia.org/wiki/Bottleneck

19911.3  Performance allocation

11.3.1  Allocate performance budgets
The execution performance of each function must be specified and allocated among
its constituent subfunctions. Execution performance addresses the time that a soft-
ware function will take to be executed on the specified computing environment. The
duration of software functions should not account for any delay associated with
external users or systems interactions. The initial allocation of performance require-
ments should be considered budgets until the design of the software functional
architecture is complete. The resulting functional specifications must then establish
the performance requirements associated with every software function. While the
functional architecture is evolving, the performance budgets may undergo continual
change as the software implementation subject-matter experts refine their expecta-
tions associated with what can be achieved and delivered.

Functional timing may be specified as a constant or variable duration. Constant
durations should be used when functional timing will be relatively consistent.
Variable duration specifications should utilize probability distribution functions to
represent the random execution duration of a function.

Analysis of the behavioral model may provide insight into the critical path of
functional execution. Critical-path analysis is a powerful approach for identifying
bottlenecks in highly concurrent systems, but typically requires detailed domain
knowledge to construct the required event graph that identifies the dependencies
and timing among events in the software behavioral model. The criticality of a par-
ticular function can be determined as the ratio of the duration of the function to
the total time of the critical path. This metric gives a quick summary of the most
important functions within a data processing sequence and contributes to the crit-
ical path. This analysis identifies the areas within the functional architecture that
offer the largest opportunities for improving overall software performance.

11.3.2  Allocate resource budgets
Analysis of the behavioral model should be conducted to balance resource utiliza-
tion among the software functions. Resources become constrained when data pro-
cessing functions execute concurrently and require access to or control of limited
resource assets. A resource that is unavailable to a function responds with a denial-
of-service response, which may place the function in a wait state (i.e., waiting for
resource availability). Some resources can be managed by queuing or organizing
functional requests for service. Prioritization of resource requests provides a basis
for managing resources and ensuring that data processing actions are accomplished
in the most efficient manner.

Initial resource allocations should be considered budgets that will be adjusted
as the software design and implementation are finalized. Performance budgets rep-
resent desired objectives for each element of the physical architecture. Structural
element specifications should identify performance requirements for implementa-
tion, however, these specifications may be adjusted to reflect the actual performance
achieved during implementation. The software implementation and test activities

200 CHAPTER 11  Functional Analysis and Allocation Practice

should be conducted to establish performance characteristics and permit the optimi-
zation of resource utilization strategies.

11.4  Architectural assessment
The emerging functional architecture must be continually assessed to ensure that
it will satisfy the software specifications and is not overly complex so as not to
impact software sustainment costs. These architectural assessment tasks provide the
software engineering team reassurance that the functional architecture represents an
efficient and effective foundation for software product life-cycle sustainment and
will facilitate future enhancements and extensions.

11.4.1  Assess requirement fulfillment
As the functional architecture is advanced, the architecture must be continually be
assessed to ensure that it will satisfy the software. The set of functional specifica-
tions should be traceable to the software requirements specifications and stake-
holder needs and expectations. The adequacy of the evolving functional architecture
is primarily determined by ensuring that the software functional decomposition is
noncomplex and that software requirements specifications have been realized.

11.4.2  Assess software performance
The software behavior must be assessed and adjusted to ensure that the perfor-
mance requirements will be satisfied. Functional timing and resource utilization
tactics should be synchronized to provide adequate software response to data pro-
cessing requests.

11.4.3  Assess architectural complexity
The functional architecture must be assessed to ensure that the behavioral complex-
ity will not adversely preclude future software enhancements. The software behav-
iors must efficiently and effectively satisfy operational or business processes.

11.4.4  Assess optimization opportunities
The functional architecture must be assessed to identify opportunities for improve-
ment. The cost of optimizing the functional design (decomposition and behav-
iors) must be justified by a significant gain in performance or reduction in design
complexity.

11.5  Establish the functional architecture
The functional architecture should be placed under technical configuration con-
trol to establish a functional design baseline for software design synthesis. The

20111.5  Establish the functional architecture

functional architecture must be complete and traceable to software specifications.
The software engineering team representatives from software implementation and
test and evaluation organizations must endorse the functional architecture and
revise their technical plans and schedules to align organizational resources with
anticipated task assignments.

The functional architecture must be documented to provide the diagrams, draw-
ings, models, and specifications against which software design synthesis can be
performed and evaluated. Functional architecture includes the design documenta-
tion shown in Table 11.1.

Table 11.1  Design Documentation for Functional Architecture

Document Title Document Description

1.	Functional
Decomposition
Description

This document describes the manner by which the software
functionality has been decomposed into subfunctions. The
functional hierarchy diagrams present the levels of functional
breakdown of functional requirements to components and units.

2.	Functional
Component
Specifications

Software functional and performance specifications for
compound elements of the software functional configuration.
These specifications represent the subrequirements necessary to
support the achievement of higher-level functional components
or software product requirements.

3.	Functional Unit
Specifications

Software functional, performance, and design specifications
for the basic elements of the software functional configuration.
These specifications represent the subrequirements necessary to
support the achievement of a lowest-level functional component.

4.	Functional
Interface
Specifications

Technical description of each software functional interface.
Identifies the purpose of the interface and provides the general
information concerning the type of information exchanged by the
interface.

5.	Software
Behavioral
Models

The behavioral models describe the functional sequences,
control, and data flows for complex functions. The behavioral
models establish the software performance and resource
utilization specifications for each thread of behavior. Failure
modes and effects are described, and fault detection, isolation,
and recovery procedures should be described.

6.	Data Persistence
Specifications

Documents the requirements for data persistence, including
the data storage capacity requirements and data storage and
retrieval transactions.

7.	Requirements
Traceability
Matrix

Documents how each requirement in the software specifications
has been satisfied by the elements of the functional architecture.

8.	Software
Nomenclature
Document

Documents the characteristics of every function, data item, and
resource identified in the functional architecture to provide a
consistent glossary of named elements.

This page intentionally left blank

203Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00012-4

Configuring the Physical
Architecture 12

CHAPTER

CHAPTER OUTLINE

12.1  Structural design solution... 205
12.1.1  Designating structural units...207
12.1.2  Prepare structural unit specifications..209
12.1.3  Establishing the software integration strategy.................................209
12.1.4  Designating engineering assemblages..211
12.1.5  Preparing the software technical data package...............................211

12.2  Structural design considerations... 211
12.2.1  Structural design guidelines...211
12.2.2  Use of modeling and simulation...215
12.2.3  Behavioral analysis..216
12.2.4  Structural trade-off analysis...217
12.2.5  Software product performance evaluations.....................................217

12.2.5.1  Design responsiveness... 217
12.2.5.2  Design dependability.. 219
12.2.5.3  Resource utilization.. 220

12.2.6  Software prototyping..222

This chapter addresses how the software physical architecture is derived and con-
figured from the functional architecture. The software functional solution was ana-
lyzed, specified, and simplified during functional analysis and allocation. During
software design synthesis, the structural elements of the product are identified and
the manner in which these elements are arranged, assembled, and integrated is
established. The result of software design synthesis is the structural configuration
of the software product, which along with its documentation comprises the physical
architecture. The complete software design solution is comprised of the functional
and physical architecture. The software product architecture is comprised of the
software product specifications, the functional and physical architectures, and the
computing environment architecture. The complete software architecture involves
the software product architecture and the post-development process architectures.
Figure 12.1 shows the relationships among the various architecture configurations.

The physical architecture captures the structural representation of the design
solution, as well as the engineering drawings, diagrams, and models from which

http://dx.doi.org/10.1016/B978-0-12-407768-3.00012-4

204 CHAPTER 12  Configuring the Physical Architecture

the solution was devised. It specifies the fundamental building blocks (structural
units) from which the software product will be implemented. During the initial
implementation phase of software implementation, these structural unit specifica-
tions communicate how software units are designed, coded, and tested. How struc-
tural units are identified and specified during software design synthesis is discussed
further in this chapter. The software integration strategy addresses the software
assembly, integration, and testing scheme that results in a fully integrated product
configuration. Finally, the use of modeling and simulation methodologies as an aid
in deciding on the preferred design solution is discussed.

The physical architecture is comprised of the technical drawings, diagrams,
specifications, and models that document the structural design solution. The
structural design solution addresses the configuration of structural units and
components, as well as how they are assembled and integrated into a single prod-
uct. Structural unit and component specifications provide the basis for software
implementation, which involves software unit design, coding, and testing, as well
as software component integration and testing. Therefore, the physical architecture
results in the software product technical data package that provides the necessary
structural design documentation to enable software implementation. The content

FIGURE 12.1

Relationships among the software architecture configurations.

20512.1  Structural design solution

of the technical data package is discussed later in the “Preparing the Software
Technical Data Package” section.

The biggest challenge to software engineering is determining how to transform the
functional architecture into the physical architecture. The functional architecture estab-
lishes the fundamental data processing tasks, data flows, logical controls, and resource
allocations for the software design solution. The physical architecture represents the
software structural design solution in terms of the software modules or structural units
and how these units interact and integrate into software components. Therefore, this
chapter discusses the following challenges to developing the physical architecture:

1.	 How are the structural units identified and specified?
2.	 How is the software integration strategy devised?
3.	 How is the structural design configuration simplified to reduce complexity and

sustainment costs?
4.	 How is the structural design solution transitioned to software implementation?

12.1  Structural design solution
The structural design solution establishes the arrangement and integration relation-
ships of structural units and components for the software product configuration
items. A software product may be composed of one or more configuration items, as
needed. A client/server–based software product will involve a client configuration
item and a server configuration item. The structural design solution also identifies
the interfaces between the software product configuration items and elements of the
computing environment, external systems, and other software applications, such as
a database management system (DBMS). The block diagram for a conceptual soft-
ware product design solution is depicted in Figure 12.2. This block diagram shows
the integration relationships among the elements of the software product configura-
tion, as well as the interface relationships between the software product and exter-
nal entities. The elements identified in Figure 12.2 are:

1.	 Software structural design solution—identifies the software product configura-
tion, structural assemblages, software integration strategy, and interfaces that
characterize the software design. The design artifacts (drawing, diagrams, mod-
els, specifications, and documentation) that describe the product configuration
comprise the software product technical data package (TDP).
●	 Software product configuration—identifies the structural units and compo-

nents that are assembled and integrated to form the software product.
●	 Structural unit—represents the fundamental design elements or software

building blocks from which structural components are assembled. Typical
terms used to refer to a structural unit include module, routine, procedure,
function, and object.

●	 Structural component—represents compound software building blocks com-
prised of two or more structural units or lower-level components.

206 CHAPTER 12  Configuring the Physical Architecture

2.	 Software integration strategy—identifies the sequence of assembly and integra-
tion tasks by which larger, more complex structural components are combined
into the final software product configuration.
●	 Structural assemblages—represent the assembly and integration tasks that

generate a structural component and the test stubs needed to support engi-
neering test and evaluation.

●	 Graphical user interface assemblage (example)—a common example of a
structural assemblage that is composed of only the graphical-based display
screens, menus, icons, and pointing device interface structural units and
components.

3.	 Software operational environment—identifies the computing equipment,
external systems, and related software applications the software product
under development is intended to execute within so that it may collaboratively
perform its tasks.
●	 Computing environment—the set of computing technology resources that the

software product is designed to operate in combination with.
●	 Interface relationships—identifies the agreement and commitment for the

software product to exchange data with other systems, equipment items,
or software applications. An interface may involve a flow of data in one

FIGURE 12.2

The software structural design solution.

20712.1  Structural design solution

direction with one source of information and one destination; it may be bidi-
rectional with multiple sources and destinations of shared data; or it may be
a broadcast-type interface in which a source broadly transmits data to any
and all qualified receivers.

●	 External interfaces—identifies the data exchange protocol and format for
data shared among interfacing (communicating) systems and applications.
An interface is a formal agreement among system developers that commits
both sides to conform to the interface control document that describes the
interface.
a.	 External systems—an external system or software application that the

software product under development must interface with to collabora-
tively achieve some purpose.

b.	 Database management system (example) —a common example of an
external software application with which a software product may be
designed to operate and interface.

The software product configuration is comprised of a number of structural
units that are combined and integrated into structural components. Structural com-
ponents are larger configuration elements that are comprised of a set of integrated
structural units and/or components. The integrated set of structural components is
used to describe the software product configuration that is intended to be delivered
to customers, stakeholders, or consumers. Structural units and components are the
product elements that will be implemented, tested, and managed throughout the
software life cycle.

It may be necessary to create assembly configurations (structural assemblages)
to support software integration and testing. A structural assemblage represents an
intermediary engineering structure that involves additional software (test stubs) that
supports software integration and testing (e.g., test harness in the hardware manu-
facturing vernacular).

Structural assemblages identify the structural units, components, and test stubs
that will be assembled and integrated to support software testing. Structural units
do not appear in the structural assemblage configuration since they are integrated
into structural components as the first level of assembly and integration. Any test
stubs necessary to support structural unit test and evaluation are not relevant to the
structural assemblage configuration since they have outlived their usefulness at the
structural assemblage level of integration and testing.

12.1.1  Designating structural units
Structural units are identified from the set of functional units specified by the func-
tional architecture. It is not efficient to resolve the collection of structural units as a
one-to-one alignment with functional units. The objective of designating structural
units is to establish a minimal but complete set of structural units from which the

208 CHAPTER 12  Configuring the Physical Architecture

software product can be configured. Structural units will ultimately be the focus of
the initial software implementation effort to design, code, and test individual soft-
ware modules, routines, or objects. Therefore, the designation of each structural
unit must consider the scope of functionality it is assigned, the need for interaction
with other structural elements, and the effort necessary to achieve the integrated
and interoperable functional performance.

The functional architecture must be evaluated to identify a set of common or
tightly coupled functional units that may be designated a structural unit. This does
not prohibit a single functional unit from being designated a structural unit. However,
the challenge of this engineering practice is to organize the specified functionality in
a practical manner that provides an efficient and effective solution. Several factors
must be considered that affect the ability to evolve the design solution over time:

1.	 The potential for future extension or enhancement to the software functionality.
2.	 The ability to adopt or adapt to changes in the computing environment.
3.	 The ability of the software product to be modified to repair design or coding

deficiencies.
4.	 The sequence of software integration and test activities necessary to assemble

the software product.

Structural units should be classified by key functional categories, such as user
interface, database transaction processing, business process function, user adminis-
tration, resource management, error handling, and data security. Criteria for identi-
fying structural units include:

●	 A single functional unit stands alone in the action it performs and there are no
similar functional units with which it should be combined.

●	 A single functional unit is problematic, risky, or requires special engineering
attention to warrant designating it a structural unit.

●	 A single functional unit requires significant modeling, simulation, or testing
effort to warrant a dedicated prototyping effort and designation as a structural
unit.

●	 Multiple functions perform similar data processing actions and can be com-
bined without increasing structural complexity or exceeding structural unit size
guidelines.

●	 Multiple functions perform data transformation on a common data set and
the grouping of these functions aligns well within the overall structural
configuration.

●	 The structural complexity of the design solution will benefit from the combining
of similar functional units regardless of the structural size guidelines.

●	 The combining of similar functional units would adversely affect software com-
ponent integration and testing.

●	 The combining of similar functional units would impact post-development soft-
ware support associated with the incorporation of changes or preplanned prod-
uct enhancements.

20912.1  Structural design solution

The set of structural units will be itemized on the software bill of material
(BOM).1 The software BOM establishes the hierarchy of structural components and
units that form the software product configuration. It is used to support the soft-
ware build process where source code files are converted into executable code,
linked together in the proper order, until a complete set of executable files is gener-
ated. The software build process utilizes the software BOM with knowledge of the
dependencies among the source code files to link the executable files into a com-
plete software product configuration.

12.1.2  Prepare structural unit specifications
Each designated structural unit must be specified to support software implemen-
tation. Structural units that are allocated multiple functional units are specified by
combining and assimilating the set of functional unit specifications in a manner so
as to eliminate duplication, resolve conflicting requirements, and aggregate perfor-
mance parameters. For structural units that correspond to a single functional unit,
the structural specification inherits the requirements contained in the functional unit
specification. In both cases, the structural unit specifications must be enhanced to
address structural requirements, which include:

●	 Source lines of code (software size) estimates
●	 Memory utilization and resource utilization estimates
●	 Internal interface definitions (software-to-software interfaces)
●	 External interface definitions
●	 Computing environment interactions and diagnostics
●	 Real-time execution constraints
●	 Synchronous data processing execution and scheduling

12.1.3  Establishing the software integration strategy
The initial level of structural components should be identified based on the need
to combine common structural units into larger, more complex assemblages. The
structural components at this initial level may be labeled as fundamental struc-
tural components due to their composition consisting of only structural units. Each
fundamental structural component represents a task to assemble and integrate a
set of structural units into a single executable file for integration-level testing.

1 See http://en.wikipedia.org/wiki/Bill_of_materials. A bill of materials is a list of the raw materials,
subassemblies, intermediate assemblies, subcomponents, components, parts, and the quantities of
each needed to manufacture an end item. A BOM can define products as they are designed (engineer-
ing BOM), as they are built (manufacturing BOM), or as they are maintained (service BOM). The
different types of BOMs depend on the business need and use for which they are intended. BOMs
are hierarchical in nature with the top level representing the finished product. BOMs that describe the
subassemblies are referred to as modular BOMs.

http://en.wikipedia.org/wiki/Bill_of_materials

210 CHAPTER 12  Configuring the Physical Architecture

Successive levels of structural components should be identified that combine struc-
tural subcomponents and/or units into larger components. These central structural
components in the integration hierarchy may be labeled intermediate structural
components. The integration of structural subcomponents and/or units into inter-
mediate structural components should continue until the topmost components are
recognized. This should result in a final set of primary structural components from
which the software product configuration will be assembled.

Each structural component must be specified by combining and assimilating the
specifications of the integrated elements. These structural component specifications
should not address the functionality exhibited by an individual substructural ele-
ment (component or unit), but should address functionality or transaction process-
ing, which is realized or provided as a result of the integration effort.

The individual component integration test strategy must ensure that the inte-
grated component performs satisfactorily. However, the main focus of the integra-
tion test strategy should be to ensure that the component requirements that are most
affected by the integration are stressed. Structural component requirements that are
not impacted as a result of the integration may be assumed to be satisfied by the
subcomponent or unit-level testing.

The number of levels in the component integration hierarchy provides a gage
into the overall complexity of the software design solution. Therefore, the for-
mulation of the software integration strategy should be guided by the following
guidelines:

1.	 Each structural component must be independently testable against its compo-
nent integration specification.

2.	 Structural components should provide a significantly more capable element in
the structural integration hierarchy. Therefore, each structural component should
be able to be traced to a significant task within the operational or business pro-
cess, or should satisfy one or more of the software requirements.

3.	 Structural components should be able to be tested as a “black box” with an
emphasis on ensuring the internal interfaces among integrated subcompo-
nents and/or units, and the measurement of component performance. Black
box testing does not evaluate the internal logic, behaviors, or algorithms of
integrated elements. It should focus on exercising the integrated functionality
and performance of the structural component that results from the integration
effort.

4.	 The number of integration tasks involved with the software integration
strategy should be condensed as much as possible. Excessive integration tasks
will increase software development costs and extend the software develop-
ment schedule. The burden associated with software integration and testing
will occur many times throughout the software product life cycle with each
update or new release of the product. Therefore, each integration task should be
scrutinized to ensure that it represents a necessary and cost-effective integration
activity.

21112.2  Structural design considerations

12.1.4  Designating engineering assemblages
Each structural component identified in the integration hierarchy should be evalu-
ated to determine if the component needs additional software drivers or stubs to be
tested. The need for additional test drivers or stubs needs to be identified and incor-
porated into the scope of software implementation planning. This is recorded within
the physical architecture as an engineering assemblage that is associated with the
structural component that needs the expanded implementation content to support
software integration and testing. The engineering assemblage must identify the test
drivers and stubs, and an engineering specification must be developed to express the
requirements for the additional software implementation tasks.

12.1.5  Preparing the software technical data package
The software TDP must be prepared to document each structural unit, component,
and engineering assemblage that must be developed during software implementa-
tion. The software TDP consists of the technical documentation (diagrams, draw-
ings, specifications, data definitions, and software integration strategy) associated
with structural units and components. The software TDP provides the formal rep-
resentation of the software physical architecture necessary for the software imple-
mentation stage of development. Software implementation involves the design,
coding, and testing of structural units, and the assembly, integration, and testing
of structural components. The effort associated with software implementation and
testing will be made significantly more efficient and effective with a coherent, thor-
oughly specified and documented software physical architecture.

The software TDP is the technical description of the software product necessary
for software implementation, acceptance testing, and post-development software sus-
tainment. Therefore, the TDP must be consistent with the evolving software product
architecture, as well as compatible with all authorized change requests and propos-
als. The software TDP, together with software development folders, acceptance test
results, and authorized change proposal, deviations, and waivers provide the basis for
the software functional configuration and physical configuration audits (FCA/PCA).

12.2  Structural design considerations
Software products provide a vast array of technical solutions for a variety of industries.
Therefore, configuring the physical architecture will be dependent on the type of design
solution being pursued. This section provides general guidelines or suggestions to be
considered when establishing software design policies, procedures, and approaches.

12.2.1  Structural design guidelines
Several software engineering principles apply to all software products, regardless of
the type of application being developed. The software engineering process is based

212 CHAPTER 12  Configuring the Physical Architecture

on a de facto top-down approach to establishing the software functional architecture.
However, configuring the physical architecture is essentially a bottom-up method-
ology. The manner by which the structural design is devised must account for the
following basic tenets concerning the manner in which the software architecture is
crafted:

1.	 Functional analysis attempts to resolve unknown information about the problem
and solution in a methodical manner. Because it involves analysis of the prob-
lem and solution space it implies a top-down methodology by which a large,
incomprehensible problem or situation is reduced to smaller, more coherent
design challenges.

2.	 Functional analysis attempts to resolve complex tasks by decomposing each
task until a set of simpler, less complex functions are perceived.

3.	 The comprehension achieved by applying the functional analysis methodology
incites a natural need to iterate upward to reconsider the problem bolstered with
a new appreciation of the problem and solution space.

4.	 The physical architecture is derived via design synthesis that strives to combine
software elements into a new, larger, more complex software element that con-
tributes effectively and efficiently to the overall design solution.

5.	 The default methodology for applying design synthesis is to begin with the
smallest parts and to progress toward a design solution by assembling and inte-
grating structural units and components into larger, more complex structural
components. However, engineering analysis involves identifying the design
challenges that entail the most risks and to seek a design resolution that involves
less risk. Then, the remainder of the design can be worked out utilizing the less
risky design solution as its centerpiece.

6.	 The desire to generate a suitable and competent design solution defies a strict
top-down functional and bottom-up design synthesis practice. Design efficiency
and effectiveness supersede the adherence to any design approach that dictates a
strict architectural design stratagem.

7.	 Software engineering blends the top-down analytical and bottom-up synthesis
techniques with an understanding that the structural design must evolve in an
abstract top-down manner. However, the abstract structural design is only rep-
resentational until it is refined by the thorough application of the bottom-up
design synthesis practice.

Software products are not bound by any scientific, technological, engineering, or
mathematical principles that provide design reference models for other products. The
vast majorities of products in the market today are based on existing products with
only minor innovative variations. The architectural design of many software prod-
ucts does not have a conventional legacy from which to initiate their design. Software
reference architectures may be established with a domain or software product line.
However, stakeholder requirements and advancements in computer technology often
render these reference architectures ineffective and inefficient. Therefore, most soft-
ware products begin the design effort with a clean slate from which to being deriving

21312.2  Structural design considerations

a design solution. The following set of software design guidelines are provided as a
suggested approach to establishing the structural design configuration:

1.	 Evaluate the top levels of the functional architecture as it is being formulated to
distinguish the central elements of the software product structural configuration.
This involves searching for common themes among the functional components
from which abstract structural elements can be identified to provide an organi-
zational, supervisory, or monitoring construct. Since all software products per-
form a form of data processing, the challenge is to establish an abstract design
configuration of top-level structural components that will be used to partition
and apportion the product functionality. The organizational, supervisory, and
monitoring constructs are addressed here to provide additional guidance in the
establishment of the abstract software design configuration.
●	 An organizational-based design draws its configuration from the manner by

which the operational or business process is performed. This can result in a
process-oriented, task-oriented, or role-based design configuration.

●	 A supervisory-based design draws its configuration from the need to provide
guidance concerning the interaction of the user/operator with the execution
of software functionality. An example of this would be a word-processing or
CAD/CAM/CAE2 application that provides a set of dropdown menus from
which the product’s main functionality is accessed.

●	 A monitoring-based design draws its configuration from the need to observe
the status of process-control systems and equipment items, and to take cor-
rective action when a deviation in system performance is recognized. The
major structural components may be organized around the real-time process
being controlled, the system or equipment items being monitored, or the
types of failures that may occur and corrective actions to be taken by opera-
tors of the computer-based monitoring system.

2.	 As the functional architecture evolves, the abstract structural design configura-
tion can be extended to encompass the improved knowledge of the functionality
associated with each structural component. This involves the identification of
abstract subcomponents to organize the lower-level functions. This can be done
in parallel with the functional analysis practice to account for the evolving
understanding of the functional architecture. When the functional architecture
is complete, the functional units must be grouped and allocated to structural
units as the building blocks or parts from which the software product will be
assembled. The structural units must be aligned with the abstract structural
components to complete the initial structural design configuration. This is
where the design effort applies both a top-down and bottom-up orientation with
an objective of establishing a comprehensive structural configuration for the
physical architecture.

2 CAD/CAM/CAE are acronyms for computer-aided design, computer-aided manufacturing, and
computer-aided engineering, respectively.

214 CHAPTER 12  Configuring the Physical Architecture

3.	 Evaluate the structural configuration to refine the design to optimize per-
formance, reduce software integration and testing efforts, and simplify the
configuration.

4.	 Establish the software integration strategy by identifying intermediary
structural components that form logical collections of structural components
for the purpose of assembling the final software product configuration. These
intermediary structural components are subcomponents of abstract structural
components. There may be rationale to restructure the structural configura-
tion based on this task, and abstract components may be eliminated altogether
or rescoped to accommodate a broader functional responsibility. The final
software integration strategy should identify the manner by which struc-
tural units and components will be assembled, integrated, and tested during
software implementation. The software build process will be patterned after
this integration strategy but without the need for the intermediary structural
integration testing.

These software design guidelines emphasize the application of functional analy-
sis and design synthesis in a manner that harmonizes the structural configuration
with the functional architecture. Functional analysis establishes the functional and
performance characteristics of the software product. It provides a well-defined,
organized approach to explore the problem space and gain in-depth understanding
of the operational features and attributes that may have been ambiguously implied
by the stakeholder needs and software requirements specifications.

Design synthesis enables the software engineering team to deduce a conceptual
design framework while the functional architecture is still being elaborated. The
conceptual design should focus on the skeletal structure of the software product
configuration upon which additional structural components can be affixed. The con-
ceptual design framework is devised by abstracting dominant functional concepts
into a set of top-level abstract structural components.

Upon the completion of the functional architecture, the design synthesis
practice is used to group and organize functional units into a complete set of struc-
tural units that form the building block of the structural configuration. Structural
unit specifications result from the consolidation of functional unit specifications
into an integrated set of requirements. The software integration strategy is estab-
lished to identify structural assemblages and intermediary structural components
that bridge the design space between structural units and the conceptual design
framework. Structural assemblages represent intermediary structural components
that involve additional test stubs and drivers to support component integration and
testing. The complete structural configuration resulting from design synthesis must
be completely specified and documented to provide the software technical data
package that is delivered to the software implementation team. The software physi-
cal architecture refers to the complete structural design as documented by the soft-
ware TDP.

21512.2  Structural design considerations

12.2.2  Use of modeling and simulation
The purpose of all engineering disciplines is to design a solution to a problem
utilizing mathematics or scientific principles to design, plan, construct, or main-
tain products. A product design is almost always shown in the form of models that
express the design characteristics of the product on a smaller scale than the orig-
inal. Engineering diagrams and drawings are forms of static models that express
manufacturing, assembly, construction, maintenance, or engineering details.
Simulations are dynamic models that are used to support the conduct of experi-
ments to gather information concerning the product or process design. The results
of modeling and simulation are used to refine the engineering characteristics and
design to improve product performance, dependability,3 and life-cycle sustainment
qualities of the product.

Modeling and simulation is the use of models, including emulators, prototypes,
simulators, and stimulators, either statically or over time, to develop data as a basis
for making architectural decisions. The terms modeling and simulation are often
used interchangeably.4 Models are static representations of the product or process
being designed, while simulations are dynamic representations.

Models and simulations are engineering tools used to:

1.	 Convey to stakeholders the characteristics of the product.
2.	 Prove the achievement of challenging engineering and design characteristics,

such as performance, interoperability, user input acceptability, and usability.
3.	 Evaluate competing design alternatives from a variety of engineering trades,

such as cost-benefit analysis, feasibility, supportability, and resource utilization.
4.	 Provide engineering representations (drawings, diagrams, executable models) of

the product design configuration, interfaces, behaviors, and integration and test
procedures.

5.	 Support user training and education on the proper use or exploitation of the
product.

6.	 Express a process definition in support of process analysis, design, and
evaluation.

Engineering models take many forms and may be constructed in a number of
materials and media formats, such as paper, clay, wood, spreadsheets, drawings,
diagrams, and CAD/CAM/CAE-based computer representations. Engineering sim-
ulations are dynamic models that are used to evaluate design characteristics under
operational and environmental conditions.

3 Dependability refers to the trustworthiness of a product to perform suitably under a variety of oper-
ational environments. It is a term that is better suited for software-based products than reliability,
availability, and maintainability, which apply to hardware-based products.
4 Department of Defense Modeling and Simulation (M&S) Glossary, DoD 5000.59-M,
U.S. Department of Defense, 1998.

216 CHAPTER 12  Configuring the Physical Architecture

Models and simulations may be utilized to support many tasks throughout the
software engineering practices to represent design concepts, evaluate design com-
petencies and quality factors, and to gather feedback on the effectiveness of the
software product or a post-development process design. This feedback fortifies the
software engineering team’s understanding and knowledge of stakeholder needs,
wants, and desires. The following sections discuss the primary uses of modeling
and simulation within the software engineering practices.

12.2.3  Behavioral analysis
Behavioral modeling and simulation support the functional analysis and design
synthesis practices by providing a comprehensive, integrated representation of
the software architecture (product and process architectural representations).
Behavioral models capture the relationships among the elements of the architec-
ture that provide traceability from design elements, characteristics, and features
back to stakeholder requirements and software specifications. Behavioral models
should represent the software architecture via the following design representations
or model perspectives:

1.	 Functional decomposition diagram—a depiction of the functional hierarchy that
captures decomposition bidirectional relationships among functional compo-
nents and units.

2.	 Operational model—a depiction of the operational or business process repre-
sented as an integrated view of functional, data, and control flows. The opera-
tional model is a composite view of a functional flow block, data flow, and
control flow diagrams.

3.	 Execution timeline—a depiction of the software product or process execution
timeline that identifies functional sequencing, data exchange durations, and
resource utilization graphs. The operational models should provide a simulation
capability that can automatically generate the execution timeline.

4.	 Entity-relationship diagram—a depiction of a single element of the soft-
ware architecture and its established relationships to other elements of the
architecture.

5.	 Interface block diagram—a depiction of the physical interfaces an element of
the structural configuration has with other structural elements, external systems,
or applications.

6.	 Structural configuration diagram—a depiction of the structural elements that
comprise the software product structural configuration, structural assemblage,
or component. It identifies the decomposition of the software product or a struc-
tural component into lower-level structural elements (components or units).
(Note: When viewed in a bottom-up manner, this diagram should identify the
software integration strategy.)

7.	 Engineering assembly diagram—a variation of the structural configuration
diagram that identifies the structural subelements, test stubs, or drivers that are

21712.2  Structural design considerations

necessary to assemble, integrate, and test a structural component or the software
product configuration.

8.	 Software integration diagram—a variation of a structural configuration diagram
that identifies the version, file name, location, etc. of each structural element
that will be involved in the assembly, integration, and testing of a structural
component.

Figure 12.3 provides a sense of the behavioral analysis design representations
for the software product architecture. The design representations identified for the
software product architecture are applicable to the architectures for each of the
post-development processes. (Reminder: The integrated product and process devel-
opment, or IPPD, philosophy states that the software engineering practices apply to
the design of the software product and post-development processes.)

12.2.4  Structural trade-off analysis
A trade study is any information-gathering exercise where two or more design alter-
natives are analyzed to assess the response of the design to the same operational or
environmental situation and conditions. The competing design alternatives must be
evaluated to understand a wide variety of product characteristics and support engi-
neering decision making. A design trade-off will typically involve key performance,
operational, and sustainment cost factors that affect product suitability, as well as
the attainment of product sustainment and development project objectives.

To derive a reasonable design solution it is necessary to consider a variety of
physical design alternatives to satisfy the functional architecture. These design
alternatives must be analyzed and assessed to determine which alternative provides
the best compromise of product and project characteristics in terms of satisfying
stakeholder requirements, needs, and objectives.

The software analysis practice is an integral element of software engineering
that supports the trade-off analysis and risk assessments associated with software
requirements analysis, functional analysis and allocation, and design synthesis.
Software analysis will be discussed in Chapter 14.

12.2.5  Software product performance evaluations
Ultimately, the software product design solution will be judged on how effectively
and efficiently it performs data processing tasks. Software engineering involves con-
tinual assessment of product responsiveness to stimulus (user and external interfaces),
its dependability to respond to a variety of operational situations and conditions, and
how well it utilizes and conserves computing resources. The following sections dis-
cuss the challenges involved with these critical performance investigations.

12.2.5.1  Design responsiveness
Software design responsiveness involves the timeliness of the software product’s
response to user inputs, external interface stimuli, or interactions with elements of

FIGURE 12.3

Behavioral analysis design representations.

21912.2  Structural design considerations

the computing environment. The software structural design must be evaluated to
determine if the design can be enhanced to improve the software product’s respon-
siveness to requested actions. The following guidelines are provided that address
enhancing the software responsiveness to user-based requests5 :

1.	 Provide timely feedback concerning the requested action:
●	 Promptly acknowledge a user input.
●	 Provide data processing progress indicators for actions taking a significant

amount of time.
●	 Respond initially by providing the most important information then disclos-

ing additional information when it becomes available.
●	 Alert the user concerning the anticipated delay needed to respond to compli-

cated requests.
2.	 Prioritize data processing actions:

●	 Postpone low-priority data processing actions until computing resources are
available.

●	 Anticipate data processing needs and perform actions in advance, when
possible.

3.	 Optimize task queue backlog:
●	 Reorder the task queue based on priority.
●	 Flush tasks that are overtaken by events or may no longer be needed.

4.	 Multitasking performance supervision:
●	 Monitor multitasking progress and adjust resource allocations to optimize

task execution and termination.
●	 Balance task duration and resource commitments.
●	 Predict task durations and determine task discreteness, concurrency, and

synchronization tactics.
●	 Establish resource monitoring and intercession supervision procedures by

anticipating resource conflicts and deadlock situations.

12.2.5.2  Design dependability
Software dependably can only be provided by extensive design evaluation of every
failure mode that may be possible. This demands that every data processing action
be examined to consider what conditions, stimuli, or user inputs could potentially
cause the data processing action to result in a faulty outcome. This involves inci-
dents that may occur within the computing environment; prevent access to external
systems or applications that are critical to the data processing action; or the receipt
of faulty data being provided by an interfacing system or application.

The Failure Mode and Effects Analysis (FMEA) performed during functional
analysis and allocation (see Chapter 11) should provide a basis for determining how
the software can be designed to be resilient to potential faults. There are two primary
methods of ensuring software fault resilience: fault prevention and fault tolerance.

5 See http://blogs.msdn.com/b/zainala/archive/2008/08/21/tips-for-improving-software-responsiveness.
aspx

http://blogs.msdn.com/b/zainala/archive/2008/08/21/tips-for-improving-software-responsiveness.aspx
http://blogs.msdn.com/b/zainala/archive/2008/08/21/tips-for-improving-software-responsiveness.aspx

220 CHAPTER 12  Configuring the Physical Architecture

Fault prevention involves establishing mechanisms intended to prevent faulty
inputs or conditions from occurring. Fault prevention directly affects the design of
the structural solution to ensure that all data introduced into a data processing trans-
action is within the acceptable, anticipated boundary for the data definition. This
includes ensuring that all data entry and user interface interactions are supervised to
prevent the introduction of improper data values.

Fault tolerance involves the detection of a faulty condition and selects a recov-
ery course of action. The fault recovery approach may return the software state
to a previously saved state (backward recovery). Another fault recovery approach
involves multiple functionally equivalent processes in a primary backup scheme
where results are compared and the preferred result is selected with which to pro-
ceed (forward recovery). If three or more redundant processes are involved, then
the comparison of intermediate results (voting) can determine which result is most
likely incorrect and the dominant result can be selected to proceed with the data
processing transaction (masking the incorrect result).

During software design synthesis it is important to address the need for fault
detection and recovery in the specification of the structural solution. Fault preven-
tion will affect the individual specifications of structural units. Fault tolerance will
impact the structural design solution to a greater extent to accommodate redundant,
parallel data processing operations. Fault tolerance is a common engineering design
concept for hardware products with redundant components working in parallel to
ensure continued operational performance should one component fail.

12.2.5.3  Resource utilization
The software design solution must provide for the efficient rationing and utilization
of scarce computing resources. During software design synthesis it is important to
establish resource utilization budgets against which structural specifications can be
established. This budget should provide an understanding of anticipated resource
consumption profiles for each thread of behavior. Further resource budgets can be
established for individual structural components and units, if desirable. Engineering
assemblies may be needed to establish resource monitoring stubs to capture actual
resource consumption profiles and provide a basis for resource utilization optimi-
zation. Figure 12.4 identifies the software architectural design and implementation
flow to ensure that resource utilization budgets are successfully realized.

Software engineering involves a number of design strategies associated with
resource utilization that must be considered to establish an efficient and effective
design solution. During functional analysis and allocation, the software behaviors
should involve the resource allocations among functional threads and individual
components and units. Resource supervision behaviors should be incorporated into
the behavioral models to evaluate multitasking scheduling, task prioritization, and
resource queuing strategies. During design synthesis these results should be incor-
porated into the specifications of structural components and units. Resource critical
structural components should be identified as engineering assemblies that specify
the resource utilization stubs needed for a performance evaluation.

FIGURE 12.4

Software resource utilization realization.

222 CHAPTER 12  Configuring the Physical Architecture

As a result of establishing the software architecture, the computing resource uti-
lization strategy must be incorporated into the software design and coding standards,
as applicable. This includes task prioritization, multitasking scheduling, queuing,
and garbage collection schemes. The resulting software technical data package and
design and coding guidelines should provide a comprehensive blueprint for treat-
ment of computing resource control and conservation.

12.2.6  Software prototyping
Prototyping is used to generate a mockup of an engineering assembly for the pur-
pose of evaluating the performance, usability, and aesthetics associated with the
graphical user interface, graphical renderings, data exchange throughput, or data
presentation forms, including printed or plotted material. Software prototyping is
a generally accepted practice for gathering stakeholder feedback on partial product
configurations. However, too often these software prototypes are evolved into the
final product configuration via an iterative or spiral methodology. This is a misuse
of the prototyping practice advocated by recognized engineering disciplines.

The generation of a software prototype has become an accepted software devel-
opment practice since it is not cost-prohibitive to construct a software prototype in
the same manner and computing language as the final product. However, prototypes
are often rapidly created without rigorous adherence to design and coding practices.
This results in a prototype configuration that is not sufficiently conceived to with-
stand the demands of the intended operational environment. Thus, when a software
development strategy embraces the evolution of a prototype into a deliverable prod-
uct it is circumventing the application of software engineering practices. The result
is a structural configuration that is inherently fragile, unstable, and unmaintainable.

Traditional engineering disciplines utilize prototypes as test articles or a proof-
of-concept archetype generated to assist product evaluation in terms of “form, fit,
and function.” The product concept is fashioned as a representative model that aids
the evaluation of the product in terms of:

●	 Determining the materials to be used in manufacturing the product.
●	 Verifying the design via functional and performance testing.
●	 Qualifying commercially available component feasibility to satisfy engineering

specifications under anticipated operational and environmental conditions.
●	 Confirming manufacturing (fabrication, assembly, and integration) procedures.
●	 Optimizing the product design features.

There are many forms of models and prototypes used in the engineering of a
product. A prototype represents an accurate fabrication of the product design in
preparation for manufacturing, construction, or implementation. Prototypes are
never finished products and many wind up in display cases, museums, or scrapyards
due to the devastating nature of the test and evaluation effort.

Software prototyping must be a focused endeavor for the purpose of reconcil-
ing critical design challenges that cannot be resolved with other types of models,

22312.2  Structural design considerations

simulations, or engineering problem-solving techniques. Software prototyping has
evolved into a scandalous practice that subverts formal software engineering prac-
tices in favor of incremental product development strategies. Current software pro-
totyping strategies involve four primary forms of prototyping6 :

1.	 Rapid prototyping—creating a working model of various parts of the software
product at a very early stage, after a relatively short investigation. The approach
used in constructing the prototype is usually quite informal, the most important
factor being the speed with which the prototype is completed. The model then
becomes the starting point from which users can reexamine their expectations
and clarify their requirements. When this has been achieved, the prototype
model is thrown away, and the system is formally developed based on the
refined requirements.

2.	 Evolutionary prototyping—creating a very robust prototype in a structured man-
ner and constantly refine it. The evolutionary prototype forms the foundation of
the software product. This permits the software team to modify and extend the
prototype in a manner that could not be conceived during the requirements and
design activities. Evolutionary prototypes may be deployed and evolved through
use in its intended operational environment. The software product is never “fin-
ished” and is “matured” as the operational environment changes.

3.	 Incremental prototyping—the final product is built as separate prototypes that
are integrated into an overall product configuration.

4.	 Extreme prototyping—Extreme prototyping is used for developing web appli-
cations. It establishes a series of three incremental software builds. The first
phase is a static prototype that consists of HTML pages to portray the page
layout design. In the second phase, the HTML pages are dynamic to permit
website navigation. In the third phase, the transaction processing functionality is
implemented.

The misconception surrounding these software prototyping strategies is the sug-
gestion that this resembles engineering. While software prototypes serve a useful
purpose in conventional software development approaches, the software industry has
embraced an amateurish, evolutionary prototyping approach to software product design
and development. This prolongs customer engagements as the product is evolved over
time, results in failed or cancelled projects due to cost overruns and extensive schedule
delays, and provides job security for many unqualified, undisciplined software special-
ists. Using, or perhaps misusing, prototyping has its disadvantages:

●	 Faulty assumptions. The focus on a limited prototype can distract software ana-
lysts from addressing the complete scope of the problem space. This can lead
to overlooking alternative design solutions, preparation of incomplete specifica-
tions, and a general lack of appreciation by the analysts for the complexity of
the software problem space.

6 See http://en.wikipedia.org/wiki/Software_prototyping#Types_of_prototyping

http://en.wikipedia.org/wiki/Software_prototyping#Types_of_prototyping

224 CHAPTER 12  Configuring the Physical Architecture

●	 Prototypes fail to scale. Since a prototype is limited in functionality, the design
it characterizes may not scale well when extended to solve the original customer
requirements. In many cases, the fragile structural framework upon which the
prototype was developed will not be capable of being enhanced in a manner to
provide a stable, long-term design solution.

●	 Users mistake the prototype as a nearly finished product. Customers view a
software prototype as a nearly complete, final product that merely needs to
be enhanced and fine-tuned. This leads customers to form misconceptions
concerning the readiness of the development team to deliver the final product.
Customers may demand that the prototype be introduced into an operational
situation well before the product is ready for such a trial.

●	 Developers become attached to the prototype. Developers become loyal to
prototypes they have spent a great deal of effort producing. This can lead to
attempts to renovate a limited prototype into a final system even though the pro-
totype is not founded upon a durable, underlying design architecture. (This sug-
gests that throwaway prototyping, rather than evolutionary prototyping, is the
preferred approach.)

●	 Excessive development time dedicated to the prototype. A key property to pro-
totyping is the fact that it is supposed to be done quickly. If the developers lose
sight of this fact, they very well may try to develop a prototype that is too com-
plex and too costly.

●	 Expense of implementing a prototype. The costs for constructing a software
prototype may exceed the benefits gained from its existence. The original pur-
pose of a prototype is to be evaluated to resolve engineering design challenges.
However, as a prototype consumes an increasingly large amount of the software
development budget it becomes a significant investment that may be difficult to
scrap.

There are situations for which a software prototype development effort should
be commissioned. Each assessment of the structural solution may reveal a techni-
cal challenge or risk that can best be reconciled by prototyping a software-based
solution. When considering the development of a software prototype, the following
considerations must be factored into the scope of the effort:

1.	 Each commissioned software prototype is an engineering step toward solving a
more significant problem. The commitment of resources to the development of
a prototype must provide a return on investment in terms of clarifying customer
needs and requirements or providing a resolution to design challenges or risks.

2.	 Software prototypes must be “engineered” in a similar manner as the deliverable
software product. The prototype must be undertaken with the understanding
that certain features and characteristics envisioned for the final product will not
be incorporated or addressed by the prototype. The scope of the prototype must
be dedicated to the engineering problem for which answers are being sought.
However, the prototype must be sufficiently crafted based on software engineer-
ing practices to tolerate demanding test conditions.

22512.2  Structural design considerations

3.	 The prototype development effort must not be held accountable for comply-
ing with software design, coding, and other quality-related practices, which do
not add value to the prototyping effort. This empowers the prototyping team to
eliminate practices or procedures of which the intent will only impede the pro-
totype development effort without providing meaningful advantages.

4.	 The prototype must be properly specified and tested to ensure that it was
designed and implemented in a manner that will substantiate the results of the
prototype evaluation. Testing of the prototype should focus on confirming that
the prototype properly manifests the design characteristics it was envisioned
to represent. The intent of prototype testing is to ensure that the prototype will
provide the data necessary to solve the problem the prototype was intended to
resolve.

This page intentionally left blank

227Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00013-6

Software Design Synthesis
Practice 13

CHAPTER

CHAPTER OUTLINE

13.1  Design conceptualization... 230
13.1.1  Establish software architectural design guidelines..........................230
13.1.2  Identify abstract structural components...233
13.1.3  Identify abstract user interface mechanisms..................................233

13.2  Design resolution... 235
13.2.1  Identify fundamental structural elements.......................................235
13.2.2  Identify integrating components..236
13.2.3  Assess software reuse opportunities..236

13.3  Design correlation.. 238
13.3.1  Establish performance benchmarks...238
13.3.2  Identify structural design deficiencies...239
13.3.3  Assess architectural alternatives...240
13.3.4  Assess software implementation challenges...................................241
13.3.5  Assess software sustainment challenges..242
13.3.6  Assess architectural integrity..242

13.4  Design manifestation.. 244
13.4.1  Establish the structural design configuration..................................244
13.4.2  Specify structural configuration elements......................................244
13.4.3  Identify engineering assemblages..244

13.5  Prepare the software technical data package.. 244

This chapter identifies the design synthesis tasks that are performed to establish the
software structural configuration and physical architecture. The structural configu-
ration identifies the structural components and units that comprise the integrated
software product. The physical architecture represents the structural configuration
with its associated assemblages, engineering drawings, models, and documentation.
The term architecting is not used; however, architectural design guidelines must be
established to guide the formulation of the structural configuration. The physical
architecture results from the application of software design synthesis in an itera-
tive manner in concert with the other software engineering principles and practices.
Therefore, software engineering is the discipline by which a complete, consistent,
and practical software product architecture is formulated.

http://dx.doi.org/10.1016/B978-0-12-407768-3.00013-6

228 CHAPTER 13  Software Design Synthesis Practice

Software design synthesis, as discussed within this chapter, addresses the tasks
necessary to establish the software product structural configuration and physi-
cal architecture. This software engineering version of design synthesis has been
adapted from the systems engineering discipline to address the unique character-
istics of software products. The systems engineering version of design synthesis
should be applied to the design of the computing environment and software post-
development processes. However, both versions of design synthesis are very con-
sistent and either can be used for nonsoftware product or process design efforts.
Figure 13.1 identifies the software design synthesis tasks as they apply to the defini-
tion of the software product configuration, and its structural units, components, and
engineering assemblies. This presentation of the software design synthesis tasks is
not intended to suggest a prescribed sequence by which these tasks are performed.
They are organized into logical groupings for the purpose of discussing the major
design activities within which these tasks correspond. The major software design
synthesis activities include the following:

1.	 Design conceptualization—the establishment of initial structural design con-
cepts derived from the ongoing functional analysis. Structural design concepts
originate from brainstorming and inspirational collaborations that suggest struc-
tural design patterns that range from typical to progressive, radical, innovative,
pioneering, and revolutionary. This involves the identification of abstract struc-
tural components and user interface mechanisms, and their arrangement and
interactions that form the upper tier of the structural configuration.

2.	 Design resolution—the continual evaluation and refinement of the physical
architecture focused on elaborating the structural configuration. Design reso-
lution facilitates the balancing of software design features, functionality, and
performance characteristics as the design solution emerges via extrapolation
(drawing conclusions or inferences). This includes the identification of struc-
tural units and components that represent the building blocks or material from
which the lower tier of the structural configuration will be crafted.

3.	 Design assessment—the evaluation of the evolving structural design solution
to determine its suitability and completeness. These design assessments are
intended to identify any challenges associated with the design solution’s abil-
ity to be implemented and its resilience to endure enhancements and extensions
sustained throughout its anticipated life cycle. Performance engineering assess-
ments should provide a calculated appraisal of the design solution’s conform-
ance with performance benchmarks.

4.	 Design correlation—results in the identification of integrated structural compo-
nents that bridge the design chasm and form the integration tier of the structural
configuration.

5.	 Design manifestation—concludes the search for a design solution and endorses
the structural configuration. Identifies structural assemblages that represent
structural components and additional software test stubs to support integra-
tion testing. Finalizes the engineering drawings, diagrams, and documentation

229CHAPTER 13  Software Design Synthesis Practice ﻿﻿

associated with each element of the design in preparation for the transition to
software implementation.

6.	 Configuration control—the technical documentation for the software prod-
uct configuration is placed under configuration control and the technical data
package (TDP) is prepared. The TDP contains the specifications, drawings,
diagrams, and associated documentation that will be delivered to the software
implementation team to convey the design characteristics for each software con-
figuration element.

13. Software Design Synthesis Tasks

13.1.1 Establish
Software Architectural

Design Guidelines
(Design Conceptualization)

13.1.2 Identify
Abstract Structural

Components
(Design Conceptualization)

13.1.3 Identify
Abstract User Interface

Mechanisms
(Design Conceptualization)

13.2.3 Assess
Software Reuse
Opportunities

(Design Resolution)

13.2.2 Identify
Integrating

Components
(Design Resolution)

13.2.1 Identify
Fundamental Structural

Elements
(Design Resolution)

13.3.1 Establish
Performance
Benchmarks

(Design Correlation)

13.3.2 Identify
Structural Design

Deficiencies
(Design Correlation)

13.3.3 Assess
Architectural
Alternatives

(Design Assessment)

13.3.4 Assess Software
Implementation

Challenges
(Design Assessment)

13.3.5 Assess Software
Sustainment
Challenges

(Design Assessment)

13.3.6 Assess
Architectural

Integrity
(Design Assessment)

13.4.1 Establish
Structural Design

Configuration
(Design Manifestation)

13.4.2 Specify
Structural

Configuration Elements
(Design Manifestation)

13.4.3 Identify
Engineering
Assemblages

(Design Manifestation)

13.5 Prepare the
Software Technical

Data Package
(Configuration Control)

FIGURE 13.1

Software design synthesis tasks.

230 CHAPTER 13  Software Design Synthesis Practice

These activities are intended to organize the design synthesis tasks into com-
mon themes that deal with the evolution of a design solution from initial concept
to resolved and manifested. Design conceptualization can be performed during the
early execution of functional analysis. This permits the structural design solution
to be roughed out to capture abstract structural components in a natural, instinc-
tive manner. This activity implies an imaginative, artistic treatment of the soft-
ware design practice. Design resolution supports the trade-off analyses that may be
performed to refine the conceptual design or to identify structural units from the
completed functional architecture. This results in a design in which the conceptual
design and structural units must be aligned by the identification of integrating struc-
tural components. Design correlation establishes the structural associations between
structural units and abstract components that are enforced via integrating structural
components.

The remainder of this chapter discusses each of the software design synthesis
tasks and provides some guidance on how the software structural design is formu-
lated. Principally, these tasks establish a three-tiered paradigm for describing the
software design configuration. The first or topmost tier captures the conceptual
structural design components derived via the design conceptualization activity. The
third or bottommost tier identifies the fundamental structural design elements (units
and components) from which the structural configuration will be fabricated. The
second or middle tier provides the design chasm that must be bridged to unify the
fundamental structural elements with the conceptual design structure. Figure 13.2 iden-
tifies the three tiers of the structural configuration that will be employed throughout
the software design synthesis discussion.

13.1  Design conceptualization
Design conceptualization encompasses the initial design tasks that contribute to
establishing the overarching structural configuration. These tasks can be performed
after the initial layers of the functional architecture have been fashioned. Developing
a conceptual design involves the identification of abstract structural elements to
devise broad design strategies intended to resolve pivotal design challenges. It is
not crucial to stipulate the conceptual design elements meticulously at this time
since the concept will be modified and refined as the functional architecture contin-
ues to evolve and provide additional technical insights. It may be desirable to defer
embracing design interpretations that are founded on speculative or deductive con-
clusions. It is advisable to maintain the conceptual design solutions nebulous until
technical evidence corroborates the selection of a preferred design arrangement.

13.1.1  Establish software architectural design guidelines
The software architectural guidelines must be established to address how the struc-
tural configuration will be devised or constrained to promote an effective, efficient, and

2
3

1
1

3
.1

 D
esign conceptualization

FIGURE 13.2

The software structural design three-tiered paradigm.

232 CHAPTER 13  Software Design Synthesis Practice

sustainable solution. Software architectural guidelines identify explicit design para-
digms that guide the organization and arrangement of the structural configuration
and influence design decisions concerning the physical architecture. A design para-
digm consists of a set of complementary rules or principles that collectively define
an overarching approach to designing the structural solution.

Design guidelines must address how the structural configuration will be fash-
ioned to establish an architectural framework that ensures design integrity. The
“Assess Architectural Stability” task provides additional material concerning design
integrity. The following criteria should be considered when identifying architectural
guidelines:

1.	 Architectural permanence—the structural guidelines intended to establish an
architectural framework that will endure product modifications and enhance-
ments throughout its intended life cycle. Permanence infers the unchanging
structure of the underlying design constructs.
●	 Configuration robustness—the design rules or policies intended to ensure

that structural elements and design mechanisms can be modified, extended,
or enhanced without fracturing architectural integrity.

●	 Architectural perseverance—the design rules or policies intended to ensure
that structural elements may perform their data processing actions regardless
of architectural modifications or enhancements.

2.	 Architectural simplicity—the structural guidelines intended to ensure the
arrangement and interrelationships among structural elements that complicate
the ability to comprehend data processing conventions.
●	 Elemental complexity—the design rules or policies intended to ensure that

computational rigor is distributed evenly among contributing structural
elements.

●	 Integration density—the design rules or policies intended to ensure a
balanced distribution of structural elements among integration tasks.

●	 Interactional complexity— the design rules or policies intended to constrain
the interactions (number of interactive data exchanges or transference of
control) among the structural elements.

3.	 Operational durability—the structural guidelines intended to ensure sustained
data processing operations under stressful and disruptive conditions.
●	 Operational load resilience—the design rules or policies intended to ensure

consistent performance of the architecture under planned and extreme work-
load profiles.

●	 Operational disruption acclimation—the design rules or policies intended to
ensure the architecture to endure external failures associated with elements
of the computing environment or external systems.

●	 Computer technology assimilation—the design rules or policies intended to
ensure the architecture is resilient to changes in the computing environment
equipment, systems, or applications.

23313.1  Design conceptualization

13.1.2  Identify abstract structural components
Developing a conceptual design begins with the identification of abstract structural
components. The top level of abstract components represents major containers for
software functionality. These abstract components will provide the foundational
elements upon which the design concept can be expressed, analyzed, and debated.
Deliberation concerning the suitability of the design concept may result in the con-
cept evolving into a more appropriate design concept. As functional analysis pro-
ceeds, the initial design concept must be reevaluated to determine if it continues to
embody the operational nature of the software product.

Abstract structural components should be labeled for their role in carrying out
the principal threads of operational behaviors. An abstract component should pro-
vide a single, focused role within the structural design concept. However, there are
no restrictions on how many roles an abstract component may assume responsibil-
ity for. When considering how to label an abstract component, the primary focus
should be placed on how the assortment of abstract structural components should
be arranged to facilitate their interaction while diminishing structural complexity.

The conceptual design layers should be captured as a software block diagram to
depict the arrangement of abstract structural components and their interfaces (inter-
nal and external). Since the software configuration does not embody any physical
dimension, the structural layout of abstract components should be based on the
relative prominence of each component within the design concept. An abstract
interface should be identified to initially represent the data exchange relationships
among abstract components and with external systems. The software block diagram
should present the conceptual design at various levels of deliberation to contend
with the most decisive design challenges.

In the early stages of forming conceptual design it is not necessary to include
every conceivable abstract component. The conceptual design is merely a device
for organizing the structural configuration to reflect the emerging perception gained
from the functional solution. It is beneficial to formulate several design concepts
that accentuate different architectural solutions to determine the preferred concep-
tual design configuration. Alternative conceptual configurations must be evaluated
to identify the most balanced solution regarding the functional architecture, stake-
holder requirements, and project cost and schedule constraints.

13.1.3  Identify abstract user interface mechanisms
The user interface mechanisms, in the form of screens, windows, and display
gadgets, often form a focal point for the software conceptual design configuration.
The software design concept may involve the identification of abstract user inter-
face mechanisms that may be regarded as structural components. User interface
mechanisms typically provide access to, and activation of, software functionality.
However, user interface mechanisms, such as windows, screens, dialog boxes, or

234 CHAPTER 13  Software Design Synthesis Practice

drop-down menus or buttons, are structural design widgets of which the behavior
facilitates user interactions with the software product.

During the conceptualization of the design solution user interface mechanisms
should be abstract in nature to provide a placeholder for further design delineation.
The conceptual design solution should not invoke user interface drawings, mock-
ups, or prototyping since it may be premature to elect design preferences. The user
interface mechanisms must be fashioned to facilitate user interactions with the soft-
ware product, and therefore necessitates the application of human factors and ergo-
nomic1 analysis (physical, cognitive, organizational, and environmental) to devise
appropriate human–software interactions.

As the structural design solution advances, the user interface may need to be
accentuated to promote stakeholder consensus as to the suitability of the mecha-
nisms, their arrangement, and appearances. Prototyping the user interface should
be the last course of action taken in an attempt to garner stakeholder acceptance of
a proposed user interface design solution. Developing a user interface prototype is
a considerable undertaking that results in a tangible, observable mockup or visual
representation of the graphical display mechanisms. Every prototype represents
a significant investment by the project that may be extravagant given the avail-
ability of alternative approaches to portraying the user interface design solution.
Prototyping is analogous to software development in terms of the effort to specify
the scope of the prototype, design the it architecturally, and implement (design, code,
test, and integrate) it.

The following types of design representation should be considered before elect-
ing to develop a costly, time-consuming user interface prototyping effort:

1.	 Illustrating, which establishes illustrated or computer-generated graphical repre-
sentations of the individual user interface (UI) mechanisms.

2.	 Content mapping, which identifies the relationships and manner of traversing
among UI mechanisms. Extremely useful in representing information display
and data input form layouts.

3.	 Storyboarding, which is used to express the progressive UI screens that the soft-
ware will render to demonstrate the user experience. Storyboards can be used to
sketch UI design concepts that correspond to individual operational processes.

4.	 Modeling, which is the generation of UI mechanisms or screens within auto-
mated design tools to enable UI graphics to be rapidly generated and modified.
These UI models can be used to capture stakeholder feedback at a reasonable
cost, which contributes to the specification of UI design mechanisms. The final
UI design documentation and diagrams can be generated by the automated
toolset.

1 See http://en.wikipedia.org/wiki/Human_factors_and_ergonomics for more on human–system/
human–computer interactions as forms of cognitive economics. The term human–software interac-
tion is used here to address the factors that affect the design of software products.

http://en.wikipedia.org/wiki/Human_factors_and_ergonomics

23513.2  Design resolution

13.2  Design resolution
Design resolution encompasses the identification of the fundamental structural
design elements and configuration alternatives to investigate the characteristics of
each structural design solution. Utilizing the nearly complete functional architec-
ture, structural units and components must be identified and specified. Structural
units provide the “material” or building blocks necessary to perform specified func-
tional behaviors and form a structural design solution.

13.2.1  Identify fundamental structural elements
The fundamental structural design elements must be identified to establish the bot-
tom tier of the structural design solution. The fundamental structural design ele-
ments include structural units and components that are depicted in Figure 13.2
within the bottom tier of the software structural design paradigm. Structural units
are established and synthesized by grouping and combining similar, compatible, or
complementary functional units into a single structural design element. Structural
components identified within the bottommost tier represent more complex func-
tional units of which the behavioral solution was understood and required no fur-
ther decomposition. These structural components may need to be decomposed into
two or more structural units to provide an efficient, effective design solution.

This task results in the identification of the bottom-tier structural design ele-
ments. It is desirable for the bottom tier to involve no more than two level of
elements, with the lower level consisting of structural units and the upper level
organizing structural components. These fundamental structural elements represent
the software modules—procedures or objects that will be specified and conveyed to
the software implementation team for programming (detailed design, coding, test-
ing, and integrating).

Structural units are distinguished by sorting, correlating, and combining func-
tional units into a cohesive, synthesized design element. This is accomplished by

●	 Unifying the functional unit specifications into a single structural unit
specification.

●	 Resolving contradictory, incongruous characteristics within the unified
specification.

●	 Refining the performance attributes against which the structural unit will be
implemented.

●	 Incorporating any necessary supervisory or administrative behavior into the
specification.

The resulting structural unit specification should entail the requirements that address
the cohesive behaviors for the structural unit.

Structural components are resolved by analyzing the functional component
specification and ascertaining the prerequisite structural mechanisms necessary to
satisfy functional component behaviors. This should result in the identification of

236 CHAPTER 13  Software Design Synthesis Practice

two or more structural units that, when integrated together, will comply with the
functional component specification.

13.2.2  Identify integrating components
At this juncture in the design synthesis practice the upper and lower tiers of the
design solution have been resolved with a conceptual and fundamental arrangement
of structural design elements. Between these two tiers emerges the design chasm,
which must be bridged to unite the conceptual design layers with the structural
design layers. This design chasm can only be traversed by identifying integrative
structural components that either:

●	 Progressively extend the structural design layers toward the conceptual design
components.

●	 Progressively decompose the conceptual design components to envelop the ele-
ments of the structural design layers.

Integrating components enable the conceptual and structural design layers to
coalesce into a comprehensive, unified structural design solution. Integrating com-
ponents should be recognizable as conceptual mechanisms of which the purpose
is to provide an assembly packaging apparatus. The integration tier provides one
or more layers of integrating components that align the lower-tier structural com-
ponents with upper-tier conceptual components. The following guidelines suggest
some principles for determining how to identify integrating components:

●	 Integrating components should provide an intuitive adaptation in the transition
from the structural to conceptual design layer.

●	 Each integrating component should represent a significant assembly and inte-
gration action and should form a perceptible element within the structural
configuration.

●	 Integrating components should provide a judicious progression of the software
integration and testing strategy. The result of each integration and testing endeavor
should be a self-contained, proven structural component with verified interfaces.

●	 Minor, incremental integration actions should be avoided unless they are delib-
erately devised to mitigate risks.

Every integrating component is a higher-level structural component. The ration-
ale for distinguishing between the structural and integrating components is the level
within the structural configuration in which they are stationed or located. Structural
components are situated in the top level of the bottommost tier and were derived
unambiguously from the functional architecture as large, complex functional units.

13.2.3  Assess software reuse opportunities
As the structural configuration matures it may be advantageous to investigate
opportunities for reusing existing software packages. Existing software packages

23713.2  Design resolution

may be available from other companies or exist within the enterprise’s proprietary
software repository. To determine if an existing software package is beneficial to
be incorporated into the software product configuration, an engineering cost-ben-
efit analysis must be conducted. This is sometimes referred to as a “make-or-buy”
analysis to support design decision making. The make-or-buy analysis assesses the
viability of utilizing a software nondevelopmental item (NDI) in lieu of incurring
the expense of developing a new software package (structural component or unit).
A make-or-buy analysis is a form of trade-off analysis that will be discussed in
Chapter 14.

A software make-or-buy analysis evaluates the advantages of incorporating an
existing software package into the design structure. The following factors should be
addressed by this analytical deliberation:

1.	 Availability of a suitable NDI solution. Software packages may bear many
superficial characteristics in common with the structural element definition.
However, there are several industrial practices that may negate an existing soft-
ware package from consideration, including:
●	 What is the maturity of the NDI software package? How dependable is the

software package based on its operational experience? How stable is the
NDI software package in terms of problem reports and fixes?

●	 Is the provider or supplier of the software package able to continue to
support the package if it were incorporated into the software product
configuration?

●	 Can the source code and documentation be purchased to enable continued
sustainment should the provider/supplier go out of business?

●	 Are there licensing or proprietary right issues with distributing the NDI soft-
ware package as an element of the software product configuration?

2.	 NDI package technical characteristics. While an NDI software package may
appear suitable at first glance at the specifications, there are performance-related
details that must be addressed:

●	 Will the NDI package execute properly within the specified computing
environment?

●	 What are the performance benchmarks for the package on a computing envi-
ronment that is similarly configured to the target computing environment?

●	 How efficiently does the package utilize computing resources?
●	 What is the precision of the data value resulting from the data processing

calculation?
●	 What language was the NDI software implemented? Can an alternate lan-

guage be assimilated and integrated into the overall software product config-
uration? Can the NDI package be assembled and complied with the software
product configuration or does it need to be linked at build time?

●	 Are the NDI package external interface and associated software interfaces
adequately documented to facilitate integrating the package into the software
product structural configuration?

238 CHAPTER 13  Software Design Synthesis Practice

For each candidate NDI package the software engineering team must gather
the information concerning its availability and suitability for incorporation into the
software design configuration. This information is used to conduct a software reuse
trade-off analysis. The candidate NDI costs and benefits, performance, and risks
will be evaluated against the projected implementation and testing costs associated
with further development of the targeted software structural unit or component. The
use of commercially off-the-shelf (COTS) database management systems (DBMS)
or similarly available COTS packages should not warrant a make-or-buy analysis.
These packages are widely used to support software application development and
have proven their adaptability to a variety of data persistence tasks.

13.3  Design correlation
Design correlation involves the application of software engineering practices to fine-
tune the structural configuration to bring the design solution within specification. The
cohesive structural design exhibits collaborative technical and performance charac-
teristics that must be gauged against the functional architecture and software require-
ments specifications. Aspects of the design solution that fall short of these prerequisites
must be adjusted to bring the structural design into compliance. The design refinement
actions should be guided by the conduct of an engineering trade-off analysis.

13.3.1  Establish performance benchmarks
The performance characteristics (benchmarks) of prominent design mechanisms
should be established for the bottom tier of the structural design solution. Prominent
design mechanisms involve structural elements of which the notional data structures,
data transformation algorithms, data integrity assurance, and data transference pro-
cedures are computationally demanding or challenging. Performance benchmarks
establish estimated data processing efficiencies and effectiveness of design mecha-
nisms within the boundary of the structural design. Performance benchmarks estab-
lish the design goals for structural elements against which software implementation
can be evaluated. Performance benchmarks are derived from the structural specifica-
tions accounting for the distribution of data processing functionality among structural
units and components identified within the bottom tier of the structural configuration.

It is necessary to establish the performance benchmarks for the bottom-tier
structural elements since they represent the building block that will be implemented
(designed, coded, and tested) against the structural specifications. The performance
benchmarks must establish the performance requirements to be specified for the
lower-tier structural units and components.

The performance of the integrated software product is a result of the sequen-
tial integration of the structural elements, through several levels of integration.
Software performance engineering must account for the effect of any encumbrance
the assimilation burden may have at the integrated component or product levels.

23913.3  Design correlation

The progressive assimilation through the levels of integration must be accounted for
to establish accurate structural element performance specifications.

Computing resource–intensive processes may perform adequately when initially
evaluated, before any integration has occurred. However, the integration detracts from
individual structural element performance as computing resources must be shared
with other data process threads. The intent is to understand the implications of appor-
tioning computing resources among interrelated, interdependent, and isolated design
elements. This suggests that software execution profiles must be analyzed within the
context of the computing system execution framework. This permits the software
performance benchmarks to account for resource sharing, multi-user workloads, and
other conditions that may be encountered during software product operations.

Software performance benchmarks should establish the computational dura-
tions and resource utilization requirements for the structural elements throughout
the structural configuration. These benchmarks must extrapolate structural design
mechanism performance to account for the integrated product’s execution profile
constrained by the shared computing system’s resource demand and allocation strat-
egy. These performance benchmarks provide an engineering approximation of the
performance characteristics derived from the functional architecture specifications.

The intent of this practice is to ensure that software product performance is
designed into the structural configuration. It is not acceptable to delay focus on
performance to software testing. By that time, the structural architectural deci-
sions have established a design configuration that impedes performance satisfac-
tion. Software performance must be an integral design consideration throughout
the engineering of the software product. Establishing software performance bench-
marks addresses understanding how structural design elements provide construc-
tive, collaborative data processing mechanisms to satisfy performance objectives.
Performance is realized by aggregating performance-related measures from the bot-
tom-tier design elements up through the structural configuration.

13.3.2  Identify structural design deficiencies
The structural configuration should be evaluated to identify design challenges and
impediments that hinder the establishment of a complete, coherent design solution.
The identified structural elements involve abstract design mechanisms that may not
adequately support the operational data processing transactions effectively or effi-
ciently. These abstract design mechanisms must be fortified or replaced with design
mechanisms that will perform their actions properly under all operational scenarios
and conditions. Identified design issues should be evaluated and prioritized to dis-
tinguish them in terms of their:

1.	 Technical imperative or necessity to be resolved.
2.	 Scope associated with their relevance to the overall design solution.
3.	 Consequences or impact if the deficiency is not resolved.

Prioritization of design issues focuses the attention of the software engineer-
ing team on design issues that have the most significant impact on the design

240 CHAPTER 13  Software Design Synthesis Practice

solution. Many design challenges may be considered a risk to project success. A
risk involves any aspect of the structural design that could potentially impact one or
more of the following project success factors:

●	 The software development project’s budget, resources, and schedule adequacy
to afford a high level of confidence for successful execution.

●	 The product suitability and dependability in regard to satisfying stakeholders’
needs and expectations. For consumer products, this addresses the viability of
the product to capture sufficient market share to generate the anticipated return
on investment.

●	 The availability of technical skills and expertise within the software develop-
ment team to implement and test the structural design mechanisms successfully.

●	 The structural design provides an effective basis for software product sustain-
ment (post-development). This involves the structural configuration and its
design mechanization’s ability to facilitate: (1) identification, isolation, and
resolution of design deficiencies (bug fixes); and (2) the incorporation of pre-
planned product improvements (P3I).

The prioritized design deficiencies must be evaluated to determine which design
issues will be investigated to work toward a restorative design solution. There are
four principle areas that are addressed here as a way to present a simplified catego-
rization of software design influences. A description of these principle areas is pro-
vided below to introduce the subsequent design synthesis tasks:

1.	 Product design preferences. The evaluation of design alternatives in terms of
their performance characteristics. The focus of this task is to assess each pro-
posed design strategy in terms of the effectiveness, efficiency, and simplicity.
The result of this task is a set of viable alternatives ranked in terms of technical
inclination.

2.	 Product implementation implications. The evaluation of design alternatives in
terms of the software implementation and testing organizations’ ability to execute
and integrate the abstract design mechanisms into the structural design solution.

3.	 Product sustainment implications. The evaluation of design alternatives in terms
of the software sustainment organization’s ability to repair, extend (increase in
scope), and augment (incorporate additional functionality or data processing
variations) the structural design solution given the inclusion of abstract design
mechanisms.

4.	 Product design integrity. The evaluation of the architectural-level structure in
terms of the structural integrity and integrity (adherence to design principles and
standards) associated with integrating abstract design mechanisms within the
structural design solution.

13.3.3  Assess architectural alternatives
Architectural alternatives identify distinctive abstract design mechanisms intended
to perform demanding data processing transactions. It may be difficult to resolve

24113.3  Design correlation

convoluted design situations flawlessly without sufficient design analysis.
Brainstorming can be used to identify potential design alternatives that lead to inno-
vative solutions. However, design decisions must be made with sufficient compre-
hension of the merits and inadequacies associated with each design paradigm or
mechanism. The preferred architectural approach should be determined to be one
that is balanced in terms of design effectiveness, efficiency, scalability, and sim-
plicity. Establishing the relative importance of architectural quality factors or pref-
erences is often where the design of software products is mistaken as an artistic
practice. The term architecture embraces the unification of art and science within
the construction engineering discipline. It is of no consequence for a software prod-
uct to exhibit a stunningly attractive user interface if the product’s performance can-
not satisfy the demands of the customer’s operational or business environment.

Trade studies should be conducted to gain an appreciation for the best architec-
tural approach to adopt among competing alternatives. Each trade study originates
with the identification of two or more approaches to an identified technical obsta-
cle. These competing design alternatives must be defined and adequately character-
ized to support a thorough trade-off analysis (see Chapter 14).

13.3.4  Assess software implementation challenges
The software engineering team involves representatives of the software implemen-
tation team to ensure that the structural configuration and assemblages provide a
context for software implementation. The software implementation representa-
tives must sanction the structural design solution declaring that it may be achieved
within established implementation plans, resources, and schedule constraints. The
software implementation team must evaluate the scope of the workload implied by
the architectural solution. Several factors must be considered to appreciate the soft-
ware implementation workload:

1.	 The skills and experience of the software implementation personnel to design,
code, test, and integrate the structural elements into a complete software product
configuration.

2.	 The data manipulation dexterity of the programming language constructs (state-
ments, semantics, evocation, extensibility, etc.) to enable software units to be
effectively and efficiently designed and coded.

3.	 The appropriateness and suitability of structural specifications to commence
implementation.

4.	 The availability of project resources (personnel, equipment, facilities, funding,
schedule, etc.) apportioned to the software implementation tasks.

Software implementation challenges must be resolved prior to the critical design
review (CDR). The CDR represents a project milestone that signifies the architec-
tural solution is sufficient to begin the software implementation phase of the soft-
ware development project. The software implementation team should endorse the
architectural solution prior to the conduct of the CDR. Any lingering issues the

242 CHAPTER 13  Software Design Synthesis Practice

software implementation team has with the architectural solution should be deemed
inconsequential to delay the project review of the architectural solution.

Programming language selection is often done for reasons other than the techni-
cal challenges inherent with the architectural solution. Frequently, the programming
language is driven by the availability of experienced and skilled staff members.
However, the programming language selection may impose significant challenges
associated with implementing the architectural solution. The following factors must
be considered when making a programming language selection:

1.	 Programming language technical capabilities. Does the language support
the data processing characteristics challenges inherent with the architectural
solution?

2.	 Programmer productivity. Does the software implementation team have the
proficiency in the programming language to design, code, test, and integrate the
architectural solution?

3.	 Availability of programming language tools, training, and consultative services.
Is the programming language supported with adequate educational and techni-
cal services to facilitate staff knowledge acquisition and automated tool support.
Programming language tools include compilers, assemblers, programmatic
design, code generation, debugging, and documentation applications.

13.3.5  Assess software sustainment challenges
The software engineering team involves representatives of the software sustainment
team to ensure that the architectural configuration and design mechanisms provide
a context for customer and product support. The software sustainment representa-
tives must sanction the structural design solution declaring it may be maintained,
within established sustainment plans, resources, and schedule constraints.

The baseline work plan for software product sustainment may include the effort
to provide customer support, help-desk operations, design deficiency resolution and
P3I. Once the initial software development effort is completed, the software sustain-
ment team may be augmented by authoritative software engineering and implemen-
tation personnel to supervise significant software product enhancements.

13.3.6  Assess architectural integrity
The integrity of the physical architecture must be evaluated to determine its ability
to adapt to future changes and conformance with established architectural guide-
lines. The following are some suggested assessment definitions based on the guide-
lines suggested by task 13.1.1, establish architectural design guidelines:

1.	 Architectural permanence—an assessment of the ability of the architectural
framework to endure product modifications and enhancements throughout its
intended life cycle.

24313.3  Design correlation

●	 Configuration robustness—the ability of structural elements and design
mechanisms to be modified, extended, or enhanced without violating archi-
tectural guidelines.

●	 Elemental perseverance—the ability of structural elements to perform
their data processing actions regardless of architectural modifications or
enhancements.

2.	 Architectural simplicity— – an assessment of the arrangement and interrelation-
ships among structural elements that complicate the ability to comprehend data
processing conventions.
●	 Elemental complexity—an assessment of the distribution of computational

rigor among contributing structural elements.
●	 Integration density—an assessment of the balanced distribution of structural

elements involved in integration tasks.
●	 Interactional complexity—an assessment of the number of interactive data

exchanges or transference of control among structural elements.
3.	 Operational durability— – the ability of the architecture to sustain data process-

ing operations under stressful and disruptive conditions.
●	 Operational load resilience—an assessment of the consistency of perfor-

mance by the architecture under planned and extreme workload profiles.
●	 Operational disruption acclimation—an assessment of the ability of the

architecture to endure external failures associated with elements of the com-
puting environment or external systems.

●	 Computer technology assimilation—the ability of the architecture to adapt to
changes in the computing environment equipment, systems, or applications.

These architectural assessments focus on three primary aspects of the structural
configuration’s ability to endure enhancement and refurbishment resulting from var-
ying operational needs, technological advances, or the resolution of design defects.
Architectural permanence and simplicity address the positive qualities that permeate
the structural configuration and enable it to endure post-development turmoil (prod-
uct operations and sustainment). Simplicity of design is the inverse of complexity and
results from the use of a small number of uncomplicated elements to maximum effect.
This is achieved by striving for a minimalist approach to architectural attainment.
Permanence of design addresses the enduring nature of the structural foundation on
which the product design is based. The inverse of permanence is transience, which
infers that the architecture will endure only a short time and cannot remain unchanged
for an extended period of time. Architectural permanence and simplicity are design
principles that must be pursued to establish a stable architectural configuration.

Operational durability addresses the ability of the product architecture to adapt to
anticipated operational situations and changes in computing technology. These oper-
ational durability measures address the ability of the software architecture to make
adjustments in response to a change in the operational environment or status. The
objective is to maintain software performance within acceptable levels despite the
variable, sometimes erratic, operational conditions a software product must tolerate.

244 CHAPTER 13  Software Design Synthesis Practice

13.4  Design manifestation
Design manifestation is the preparation of architecture diagrams, drawings, and
documentation that detail the structural configuration. This includes the specifica-
tion of every element of the structural design, external and internal interfaces, and
associated data structures. Structural configuration items that need software stubs to
support software integration testing should be identified as engineering assemblies
and these test stubs specified.

13.4.1  Establish the structural design configuration
The structural design configuration should be placed under technical configuration
control to prevent the introduction of inadvertent changes. Every element of the
structural configuration should be uniquely identified per approved software con-
figuration control procedures. From this point forward, only change requests or pro-
posals that have been approved by the software change control board (CCB) should
be integrated into the structural configuration.

13.4.2  Specify structural configuration elements
Each element of the structural configuration must be specified to support software
implementation. These specifications represent the technical requirements for the
design, code generation, testing, and integration of structural units and components.
Each structural element specification, diagram, and drawing should be placed under
technical configuration control before being included in the software technical data
package.

13.4.3  Identify engineering assemblages
Engineering assemblies should be identified and the additional test stubs speci-
fied. The identification of engineering assemblies provides the complete scope of
work necessary for the software implementation team to plan and execute software
integration and testing. Engineering assemblies involve the integration of structural
components and the associated test stubs needed to verify integration success.

13.5  Prepare the software technical data package
The software technical data package (TDP) must be finalized in preparation for the
CDR. At this stage of development, the software technical data package is marked
engineering to distinguish it from the release version that supports the software
build and product replication processes. The software TDP contains the software
bill of material (BOM) for the software implementation phase of development. It
identifies the software architecture material that describes the software product

24513.5  Prepare the software technical data package

under development. This TDP involves the complete set of drawings, diagrams,
documentation, and models that describe the software product to be implemented.
The TDP involves a software BOM and the complete set of software product docu-
mentation material or a reference to the authorized version of each material item.
Material items that are being hosted electronically must be identified by a file iden-
tifier and location where they are stored within an engineering data management
facility (or software product data management (PDM) application).

The following material must be identified within the software BOM:

1.	 Software Product Identification
1.1.	 Nomenclature
1.2.	 Product Identifier

2.	 Software Requirements Baseline Material
2.1.	 Software Requirements Specifications
2.2.	 Software Interface Specifications
2.3.	 Operational Models

2.3.1.  Operational Scenario A
2.3.2.  Operational Scenario B

2.4.	 Operational Environment Description
3.	 Software Functional Architecture Material

3.1.	 Functional Hierarchy
3.2.	 Behavioral Models
3.3.	 Functional Specifications (Optional*)

4.	 Software Physical Architecture Material
4.1.	 Architectural Guidelines and Principles
4.2.	 Structural Configuration—Tier 1 (Abstract Components)
4.3.	 Structural Configuration—Tier 2-N (Integration Components)
4.4.	 Structural Configuration—Tier N (Structural Components)
4.5.	 Structural Configuration—Tier M (Structural Units)

5.	 External Interface Design
5.1.	 DBMS Design Document

5.1.1.  Table Descriptions
5.1.2.  Query Descriptions

5.2.	 (External System) Interface Description Document
6.	 Outstanding Change Requests and Proposals
7.	 Computing Environment Description
8.	 Notes

* Note: The functional architecture has been included in this software BOM to provide a complete
description of the software product architecture. The functional unit specifications are incorporated
into the structural configuration element specifications. Therefore, it is not necessary for them to
be included in the software BOM, although they will be required to support software configuration
audits.

This page intentionally left blank

247Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00014-8

Software Analysis Practice 14
CHAPTER

CHAPTER OUTLINE

14.1  Defining the trade study.. 250
14.1.1  Establish the trade-study scope..250
14.1.2  Identify the candidate alternatives..250
14.1.3  Establish the success criteria...251

14.2  Establish the trade-study environment... 251
14.2.1  Assemble the experimental mechanisms..252
14.2.2  Assemble the data collection and analysis mechanisms..................253
14.2.3  Establish trade-study procedures..255

14.3  Conduct the analysis.. 255
14.3.1  Evaluate requirement alternatives...256
14.3.2  Evaluate functional alternatives..256
14.3.3  Evaluate structural alternatives...257

14.4  Assess project repercussions... 258
14.4.1  Assess developmental implications...258
14.4.2  Assess project implications..258
14.4.3  Identify project execution strategies..259

14.5  Evaluate trade-study results.. 259
14.5.1  Prioritize architectural alternatives..259
14.5.2  Determine the preferred course of action.......................................260
14.5.3  Document the trade-study decision...261
14.5.4  Promote the execution strategy...261

The software analysis practice stage involves the analytical tasks for performing a
variety of engineering trade studies to assist in making architecture-based design
decisions. Software analysis trade studies address compound situations that involve
an array of factors concerning the software product and its life cycle, and the soft-
ware development project. This distinguishes software analysis trade studies from
other types of analysis techniques that may only focus on establishing software prod-
uct characteristics.

Software analysis trade studies may be referred to as trade-off analysis, which
is a technical form of cost-benefit analysis. An engineering trade study is more

http://dx.doi.org/10.1016/B978-0-12-407768-3.00014-8

248 CHAPTER 14  Software Analysis Practice

complicated than a cost-benefit analysis since it is intended to achieve a bal-
ance among a broader range of competing product characteristics, technical and
project-related risk factors, as well as considerations for life-cycle cost implica-
tions. Software architectural design alternatives must be expressed in terms of the
level of stakeholder satisfaction, projected software product life-cycle costs (devel-
opment and post-development processes operations), and anticipated benefits to the
enterprise over time. Software engineering trade studies are devised to be holistic
by considering a full range of factors in the decision-making process.

Trade studies must be established in a manner that provides a “value” assess-
ment for competing architectural alternatives. Architectural decisions should con-
tribute to establishing an enduring structural framework (composition, organization,
arrangement, and structure) for the software product that can withstand extreme
operational situations, adapt to changing computer technology, and accommodate
future enhancements and improvements. Software architectural alternatives must be
evaluated in a manner that permits the analysts to gather information concerning a
variety of design repercussions, including:

●	 Software product features and functionality
●	 Product performance
●	 Aesthetics or user interface “look and feel”
●	 Difficulty to implement
●	 Difficulty to test and evaluate
●	 Impact on software replication (reproduce the executables on distribution

media) and distribution
●	 Impact on user training and comprehension
●	 Impact on customer support processes
●	 Impact on product support processes
●	 Impact on product enhancement and scalability
●	 Alignment with organizational objectives, such as product lines, component

reuse, and product frameworks.

Software analysis involves 16 tasks that are organized within six general
themes. These themes identify a typical flow for conducting a trade study. However,
the tasks within a theme may be conducted in any order or sequence suitable to the
trade-study situation. The trade-study themes and tasks are identified in Figure 14.1.
The six themes are:

1.	 Defining the trade study
2.	 Preparing the trade-study environment
3.	 Conducting the evaluation
4.	 Assessing project repercussions
5.	 Evaluating trade-study results
6.	 Decision assimilation

249Software Analysis Practice﻿﻿

FIGURE 14.1

Software analysis tasks.

250 CHAPTER 14  Software Analysis Practice

14.1  Defining the trade study
Every architectural trade study should be formally authorized by the leader of the
software engineering team. Architectural trade studies imply that an architectural
function, differentiating characteristic, or performance objective represents a decisive
opportunity to impact product performance, quality, or durability. The design deci-
sion should not be left to a single individual due to the repercussions the decision
may have on the product throughout its life cycle. Therefore, the decision must be
derived by a consensus vote of the software engineering team, and may involve other
members of the project management team, customers, or important stakeholders.

14.1.1  Establish the trade-study scope
Trade studies originate from architectural challenges affecting the software product
definition. These areas of concern involve: (1) the establishment of an achievable soft-
ware requirements baseline, (2) formulating the functional architecture and its repre-
sentative behavioral models, and (3) establishing a robust structural configuration for
the physical architecture. Each area of concern represents a distinct type of architec-
tural decision that can potentially affect other aspects of the architectural solution.

The scope of each trade study must be defined to restrain the investigation and
ensure that the analysis will provide the data necessary to facilitate an informed,
impartial design decision. Therefore, the manner in which the trade study is defined
deserves thoughtful consideration. Establishing the trade-study scope should be
driven by the data required to be collected and analyzed to support the architec-
tural assessment. The problem under investigation may present itself as a stake-
holder need, performance, behavioral, structural, or quality concern. However,
every architectural decision may entail complications associated with other aspects
of the product definition and life-cycle processes. No architectural decision should
be taken casually. Conversely, the rigors applied in conducting the trade study must
be tempered to the significance of the architectural problem being evaluated.

14.1.2  Identify the candidate alternatives
For each architectural challenge there may be a vast number of alternatives that
complicates the selection of viable alternatives. The candidate solutions that will
be considered during the trade study only include those of which the potential for
enhancing the software architecture are significant. The list of possible solutions
must be trimmed to a small set of viable candidates. Candidates should be assessed
to surmise the anticipated benefits and consequences of incorporating the solution
into the software architecture. The following questions should be contemplated
when attempting to appraise the viability of candidate solutions:

1.	 What are the important technical characteristics associated with the solution?
2.	 How should the solution contribute to the architectural integrity (adherence to

architectural principles) of the software product architecture?

25114.2  Establish the trade-study environment

3.	 How should the proposed solution affect the performance characteristics of the
integrated software solution?

4.	 What is an acceptable level of difficulty associated with implementing and test-
ing the solution?

5.	 How should the solution impact software operational and sustainment processes?

These questions and others should be used to establish the trade-study entrance
criteria for candidate solutions. Entrance criteria provide the prerequisite conditions
that must be satisfied for a candidate solution to be included in the list of viable can-
didates. Viable candidates may be prioritized to establish an authoritative ranking
among the alternatives prior to the conduct of the trade-off analysis. The list of prior-
itized alternatives should be presented to stakeholder representatives at the trade-study
kick-off meeting. Stakeholders should be canvassed to identify any further factors that
may contribute to a candidate solution from being considered or ranked differently.

14.1.3  Establish the success criteria
The success criteria must be established, against which candidate alternatives will
be assessed. Success criteria establish the minimally acceptable and objective fac-
tors that characterize the ideal solution. This provides a range of values for each
success factor within which an alternative should be deemed acceptable. The alter-
native that is determined to be best suited to be adopted into the software architec-
ture should conform to a majority of the success criteria.

Success criteria must address an assortment of software life-cycle factors,
including performance, technical difficulty to implement, usability, effect on the
enduring properties of the software architecture, and risks to project success. These
criteria should be weighted to prove a balanced appraisal of an alternative. The suc-
cess criteria and weighting scheme should ensure that all success factors influence
the determination of the preferred solution.

A radar or spider chart provides a diagrammatic means of expressing the success
criteria and rating the alternatives. A radar chart is a graphical method of displaying
multivariate data in the form of a two-dimensional plot of three or more quantitative
variables. Each variable or success factor is measured on an axis that extends from
a center point similar to a spoke on a wheel. The innermost ring of values represents
the minimal value for each success factor and the outermost ring of values represents
the objective values. When an alternative’s measurement falls below the innermost
ring, touching the center point, it has not met the minimally acceptable criteria. If
the measurement extends beyond the outermost ring, it has exceeded the objective
criteria. Multiple alternatives can be plotted on the diagram to provide a comparison
among them in a simple manner. Figure 14.2 provides an example of the radar chart.

14.2  Establish the trade-study environment
The environment in which the trade study will be conducted must be established
and qualified that it is suitable to perform the investigations. The trade-study

252 CHAPTER 14  Software Analysis Practice

environment involves the mechanisms (tools, equipment, and scenarios), data col-
lection and analysis tools, and procedures that define how the trade study will be
performed.

There are a variety of approaches to conducting a trade study. However, the
“design of experiments” involves a formal, scientific approach to gather data under
controlled conditions. The term experiment implies an efficient approach to gath-
ering engineering data that enables conclusions to be drawn. To establish a “con-
trolled” experiment, it is necessary to ensure that the experimental environment can
be controlled in a manner that provides consistent, repeatable results. The trade-
study methodology must ensure the accuracy and nonbiased assessment of compet-
ing architectural alternatives.

14.2.1  Assemble the experimental mechanisms
The trade-study definition should provide sufficient information concerning the
investigation to determine the tools, models, or simulations that are needed to sup-
port the trade study. These experimental mechanisms must be assembled and quali-
fied. Trade-study tools and models should provide abstract representations of each
architectural alternative. A computer-based simulation provides dynamic modeling

FIGURE 14.2

Radar or spider chart example.

25314.2  Establish the trade-study environment

mechanisms that emulate expected operational or behavioral responses of a design
representation to stimuli and conditional situations. Experimental mechanisms
should be defined in a manner that enables each architectural alternative to be eval-
uated under the same conditions to ensure the consistency of the data collected.

The experimental mechanisms should express the architectural alternatives at a
level of engineering detail that reflects the maturity of the overall software archi-
tecture. The mechanisms must exhibit the design characteristics needed to assess
the competing alternatives against the evaluation success criteria. Experimental
techniques must address the scenarios that will be used to exercise the alternatives
and generate the data required for comparative analysis. Scenarios should identify
the preconditions and sequence of events under which the experiment will be con-
ducted. Unlike a test case, it is not necessary to establish the expected outcomes for
a scenario. The results of the experiment are to be captured and analyzed to deter-
mine how the architectural alternatives reacted to each scenario.

14.2.2  Assemble the data collection and analysis mechanisms
The purpose of a trade study is to establish the relative value proposition of each
competing architectural alternative. To accomplish this, the ability to gather and ana-
lyze the proper data is influential toward the relevance and suitability of conclusions
drawn from the data sets. Data collection tools, instruments, and appendages are
directly predisposed by the selected experimental mechanisms. Therefore, data col-
lection and analysis mechanisms must be considered during the identification of the
experimental mechanisms defined in the “Assemble Experimental Mechanisms” task.

There are a variety of approaches to collecting and analyzing experimental data
sets dependent on the experimental approach utilized. Table 14.1 provides a list of
data collection mechanisms available and the types of analytical techniques that
support their analysis. When computer-based models and simulations are employed
it may be necessary to assess the fidelity of each model to capture and preserve the
pertinent data elements. The precision of the model parameters must be harmonized
to ensure a consistent data set for analysis. The data files resulting from the experi-
mentation should be backed up and controlled to provide an historical record of the
trade-study outcomes. The data analysis techniques represented in Table 14.1 are
defined as follows:

1.	 Time series analysis—the analysis of a sequence of data points, measured typi-
cally at successive time instants spaced at uniform time intervals. The analysis
of time series data for the purpose of extracting meaningful statistics and other
characteristics from the data.

2.	 Data mining—a technique that attempts to discover patterns in large data sets or
databases.

3.	 Sensitivity analysis—an assessment of how the output of a model can be attrib-
uted to the input to support what-if analysis exploring the impact of varying
input assumptions and scenarios.

Table 14.1  Data Collection Mechanisms and Analysis Techniques

D
at

a
C

o
lle

ct
io

n
M

ec
ha

ni
sm

D
es

cr
ip

ti
o

n
Data Analysis Techniques

T
im

e
S

er
ie

s

D
at

a
M

in
in

g

S
en

si
ti

vi
ty

A

na
ly

si
s

S
tr

uc
tu

ra
l

A
na

ly
si

s

B
eh

av
io

ra
l

A
na

ly
si

s

Q
ua

nt
it

at
iv

e
A

na
ly

si
s

Q
ua

lit
at

iv
e

A
na

ly
si

s

S
im

ul
at

io
n

Survey Used when there is a need for a particular class of people to
provide expert opinion in the area of concern.

X X

Interviews Used when there is a need to gain first-hand information from
stakeholders, users, or other experts. It is unsuitable in cases
where there is a need to gather data form a large number of
individuals.

X X

Group
consensus

Used to obtain the consolidated opinions of a select group of
individuals and to sort out personal opinions or prejudices.

X X X

Engineering
judgment

The application of professional engineering knowledge to work
out a solution or render a course of action.

X X X X X

Scientific
experimentation

A test under controlled conditions to demonstrate a known
truth, examine the validity of a hypothesis, or determine the
efficacy of something previously untried.

X X X X X X

Physical models A conceptual, graphical, or mathematical representation
of a real-world product or process being studied. Physical
models are typically used when it is either impossible or
impractical to create experimental conditions in which scientific
experimentation can directly measure outcomes. A model
is also a way in which the human thought process can be
amplified or assumptions can be clarified.

X X X X X

Computer-based
models

The development of a software-based model of a product
or process for the purpose of obtaining an understanding of
anticipated or unanticipated behaviors or results.

X X X X X X X

25514.3  Conduct the analysis

4.	 Structural analysis—a determination of the effects of physical or environmental
loads on physical structures and their components. Structures subject to this
type of analysis include buildings, bridges, vehicles, machinery, furniture, etc.
The results of the analysis are used to verify a structure’s fitness for use, often
eliminating the need for physical stress testing.

5.	 Behavioral analysis—Reproduces the required behavior of the modeled system
in terms of functional, control, and data flows; resource utilization; execution
duration; and interface data transmission rates.

6.	 Quantitative analysis—improves the overall quality of decision making through
the use of complex mathematical and statistical modeling, measurement, and
research. These techniques are most commonly used in functional or behavioral
models, decision trees, and simulations.

7.	 Qualitative analysis—provides a subjective way of analyzing data without using
mathematics or statistics. It is used to investigate behaviors exhibited by a sys-
tem to understand the design mechanisms that govern such behavior.

8.	 Simulation—the imitation of the behavior of a real-world process or system
over time. Simulation is used with engineering modeling of natural or human-
made systems to gain insight into their performance and behavior under various
operational conditions.

14.2.3  Establish trade-study procedures
Trade studies are controlled experiments and involve adhering to a consistent set
of procedures for each trial. The procedures must permit a consistent application
of experimental conditions and stimuli for each alternative being evaluated. The
trade-study procedures must be prepared so that they address the following stages
of trade-study progression:

1.	 Environment setup—the preparation of the experiment for each candidate
alternative.

2.	 Initialization—the loading of scenario data sets and preparation of data collec-
tion mechanisms to capture and record the experimental data.

3.	 Execution—the carrying out of actions, such as operator inputs during the trial
scenario.

4.	 Termination—the actions necessary to end the trial and place the environmental
and data collection mechanisms into an inactive state.

5.	 Analysis—the consistent approach to examining the captured data sets to
identify the level of accomplishment achieved by each candidate alternative
evaluated.

14.3  Conduct the analysis
The software analysis practice distinguishes between three types of trade stud-
ies that apply to the definition of the software architecture: requirements-oriented

256 CHAPTER 14  Software Analysis Practice

studies, functional architecture–oriented studies, and physical architecture studies.
Each of these elements of the software architecture has unique characteristics that
must be considered when conducting a trade study. Therefore, each of these analy-
sis areas will be addressed separately in the following sections.

14.3.1  Evaluate requirement alternatives
Requirement trade studies should be conducted in the area of requirements to
ensure that stakeholders and the software engineering team comprehend the impli-
cations of every requirement. There are several motivations for conducting a trade
study within the requirements domain:

1.	 Requirements as a communication mechanism. The language used to express
a requirement is ambiguous by design. Language is inherently ambiguous to
permit the context in which a term is used to define its meaning. Whenever
there are formal expectations concerning a product or service, the agreement
that specifies the deliverable must not be ambiguous. Thus, establishing a clear
understanding of stakeholder needs and expectations is vital to establishing an
achievable software requirements baseline.

2.	 Stakeholder needs and expectations may involve conflicting demands.
Stakeholders become absorbed with their particular needs and must be made
to understand how individual demands conflict with other’s needs. To resolve
stakeholder conflicting demands, it may be necessary to conduct experiments to
derive a proper balance among stakeholder needs.

3.	 Software products automate business and operational processes. While stake-
holders may be familiar with their processes, the semantics used by stakeholders
to describe a process may be overloaded with industrial terminology unfamiliar
to software personnel. Operational models provide a mechanism to encapsulate
and translate these process descriptions into a representation comprehensible to
software-literate personnel.

4.	 Requirements may overstate performance demands. Requirements impose level-
of-performance demands on data processing transactions. It may be necessary
to establish operational models to assess the reasonableness of stringent perfor-
mance expectations. The availability of software and computer technology to
achieve performance expectations must be substantiated by analyzing alterna-
tive operational or computational approaches.

14.3.2  Evaluate functional alternatives
Functional models are a means of translating software requirements into logical
or behavioral representations that focus on how a data processing transaction can
be executed. This results in a functional decomposition from which the software
structural configuration will be arranged. There are always multiple approaches to
performing data processing transactions and deriving a functional breakdown. The

25714.3  Conduct the analysis

primary reasons for conducting trade studies concerning the functional architecture
are:

1.	 Evaluating data processing transaction behaviors. Transactions can become
very complex as the number of conditional responses increase. Understanding
all of the various discrepancies that may occur and determining the best
approach to contend with each variation may necessitate the evaluation of
alternatives.

2.	 Evaluating resource utilization concentrations. Certain transactions may con-
sume a disproportionate amount of resources that must be resolved by determin-
ing how to adjust the data process burden to stabilize resource utilization.

3.	 Evaluating data processing deadlock situations and resolution approaches.
Deadlock can occur any time two data processing transactions compete for
resources. Understanding the resource utilization and allocation management
strategy associated with design alternatives may provide important insight on
how to best avoid deadlock situations.

4.	 Evaluating failure modes and possible responses. Understanding the most
appropriate response strategy to failure modes may involve evaluating behavio-
ral alternatives. Failures may arise from a number of sources, and each failure
mode will affect the data processing control flow. Alternative approaches to
responding to failure conditions should be analyzed and socialized to determine
the best response.

14.3.3  Evaluate structural alternatives
The structural configuration represents how the software units are organized into
structural components. This involves the assembled and integration tasks that corre-
spond to the high-level conceptual structure of the software product. The preferred
structural arrangement and integration strategies must be evaluated to comprehend
the performance and physical characteristics associated with configuration alter-
natives. The primary reasons for conducting trade studies concerning the physical
architecture are:

1.	 Evaluating the arrangement of structural units. The arrangement of structural
units often imposes restrictions on the accessibility to software functional-
ity. Alternative arrangements or groupings of structural units into structural
components should be analyzed to determine the most acceptable structural
arrangement.

2.	 Evaluating the software integration strategy. The approach to software integra-
tion imposes a workload associated with software integration and testing. The
integration strategy may also affect software performance and resource utiliza-
tion profiles. The consequences associated with the integration strategy can be
best understood by evaluating alternative strategic schemes.

3.	 Evaluating the integrity of structural solutions. The structural solution must be
evaluated to determine how well it conforms to structural design guidelines and

258 CHAPTER 14  Software Analysis Practice

principles. Deviations from adopted design guidelines should be evaluated to
determine if the departure from the guidelines adversely impacts operational
performance or structural stability of the structural configuration. Alternative
structural solutions may resolve the deviation, but may impose undesirable
consequences on product performance and stability.

14.4  Assess project repercussions
Once the alternatives have been analyzed from a technical perspective, they must
be evaluated to understand the impacts they may present if they were imple-
mented within the existing project context. The initial assessment of the alterna-
tives delved into the implied software implementation and operational and support
challenges. However, the final determination concerning which of the architectural
design approaches to advocate must account for the capacity of project resources to
accommodate the design scheme.

14.4.1  Assess developmental implications
Each alternative should be evaluated to determine the work involved with imple-
menting the design approach within the project and technical plans. The integrated
master plan, schedule, and technical work packages should be reviewed to deter-
mine how the alternative corresponds to and complements the anticipated work
assignments. The software engineering team must negotiate the adjustment of tech-
nical plans, schedules, and work packages with software development organiza-
tions. The objective is to ensure that the effort to pursue an architectural solution
can be accommodated within established organizational resources.

Elements of architectural solutions may challenge the competencies of devel-
opment organizations to assimilate a design solution within their plans. Each
challenge should be identified as a technical risk to the adoption of a proposed
architectural solution. Technical risks should be mitigated in a manner that presents
an inconsequential liability to achieving project objectives. Development factors
involve the ability to implement, test, and deploy the software product. Associated
factors involve software operational stability, usability, user training and educa-
tion, and software sustainment. This may necessitate the adoption of an innova-
tive or unconventional programming paradigm, language, or computing platform.
It is important to ensure that the full range of software product life-cycle factors is
addressed before adopting an architectural design solution. The integrated product
and process (IPPD) philosophy embraces considering the complete life-cycle set of
factors when evaluating architectural design alternatives.

14.4.2  Assess project implications
The project team should evaluate the developmental implications and risks asso-
ciated with the execution of competing alternatives. The project plan, schedule,

25914.5  Evaluate trade-study results

and work breakdown structure (WBS) should be reviewed to determine how well
each alternative corresponds to and complements the achievement of project objec-
tives. The intent is to ensure that the effort to pursue an architectural solution can be
accommodated within established project resources. The project team may propose
the application of project reserve resources to accommodate uncertainty and protect
against technical risks. The challenges associated with incorporating an architec-
tural solution into the project structure must be evaluated to provide an adequate
scheduling margin to account for potential complications.

14.4.3  Identify project execution strategies
A strategy should be developed for each architectural alternative to address how
each solution would be assimilated into the current project situation. This involves
the evaluation of project plans, schedules, and budgets that must be realigned to
accommodate the architectural solution. Each execution strategy must account for
the rework necessary to assimilate the design solution into the product configura-
tion. This involves incorporating the solution into software product specifications,
diagrams, and drawings to reflect the solution, as well as adjusting any of the soft-
ware post-development process definitions and associated documentation.

Project plans and schedules must provide the flexibility to accommodate devi-
ations caused by technical complications that may arise. Risks should be closely
monitored and contingency tactics must be prepared to facilitate course correction
maneuvers should a risk manifest itself and threaten the achievement of project
objectives.

14.5  Evaluate trade-study results
The competing alternatives must be prioritized against the trade-study success cri-
teria. The alternative that is regarded worthy of embracing should be the alternative
that affords the most balanced solution. The course of action must be determined
concerning how to proceed with the execution strategy throughout the project and
technical echelons of the development organization. The results of the trade study
must be documented to maintain a history of architectural design decisions. These
records provide a basis for improving the maturity software engineering practices
within the enterprise.

14.5.1  Prioritize architectural alternatives
The alternatives should be prioritized in a manner that optimizes the probability
of success. Because each trade-off analysis is different, it is not possible to pro-
vide a standard algorithm for computing the probability of success approximation.
However, the factors noted in Table 14.2 should be considered when weighting suc-
cess criteria in terms of project and product success.

260 CHAPTER 14  Software Analysis Practice

The prioritized set of alternatives should reveal the preferred solution. The
remaining alternatives should be evaluated to identify the technical, programmatic,
and project differences between each alternative and the preferred solution. This
differentiation should provide a summary that substantiates the beneficial char-
acteristics of the preferred solution. This set of prioritized alternatives should be
presented to a committee of stakeholders along with the execution strategy for the
preferred solution. This provides the stakeholders an opportunity to raise any final
concerns with results and conclusions being drawn from the trade study.

14.5.2  Determine the preferred course of action
The execution strategy must be adjusted to contend with the work associated
with the selected architectural design alternative. The final course of action must
describe the tasks that address the assimilation of the design alternative into the
software architecture. Architectural decisions must provide clear direction on how
the software architecture will be brought into compliance with each architectural
decision. Decisions represent the result of investigating the problem space in depth,
which results in a better understanding of the characteristics that must be embodied
by an architectural solution. The execution must determine how the selected solu-
tion will be integrated into the current state of the software architecture, its docu-
mentation, and its work plans.

Each technical organization must update their technical plans, schedule, and work
packages to reflect the new understanding of the work ahead. Previous plans, sched-
ules, and work packages provide placeholders for detailed tasks in the form of abstract

Table 14.2  Project Success Factors

Project Success Factors Description

Timeliness Probability of completing the project within schedule
constraints.

Cost reasonableness Probability of completing the project within allocated
resources (staffing, facilities, equipment, funding, etc.).

Level of confidence Probability of avoiding risks and completing the project
in a timely and cost-effective manner.

Stakeholder satisfaction Compliance with stakeholders’ needs and expectations.
Architectural integrity Compliance with architectural guidelines.
Architectural stability Robustness of the product architecture to endure future

changes and enhancements.
Value proposition The perceived value of the product in delivering a return

on investment in terms of product effectiveness versus
acquisition (purchase price, training and education,
operational costs) and support (customer and product
support services) costs.

26114.5  Evaluate trade-study results

assignments. These abstract assignments may now be embellished with additional
details resulting from an improved understanding of the design solution. Previous pre-
pared drawings, diagrams, specifications, and other design artifacts may need to be
refined to incorporate the design solution. This action improves the design representa-
tions and incrementally progresses the software architecture toward completion.

14.5.3  Document the trade-study decision
The decision on a preferred course of action must be documented to preserve the
rationale for the decision, the representative of the technical organizations involved
in the trade study, and stakeholder representatives informed of the decision-
making process. The significance of each trade study will vary from minor architectural
challenges to a strategic convergence among stakeholder needs, software require-
ments, functional architecture, and structural configuration. The level of documen-
tation for a decision must reflect its significance to the software architecture.

A trade-study report should be prepared to summarize the following aspects of
the trade-study methods, alternatives considered, and outcomes:

1.	 Technical challenge—the engineering enigma thath was investigated and the
significance of the problem within the software architecture context.

2.	 Trade-study methodology—the approach to evaluating the architectural design
alternatives.

3.	 Alternatives—a descriptive list of candidate alternatives that were evaluated
within the scope of the trade study.

4.	 Success criteria—the definition of the success factors and their relative weight
in the final determination of a preferred solution.

5.	 Analysis results—the final measures of effectiveness, developmental and project
costs, and schedule implications associated with the alternatives and the com-
parative ranking among the alternatives.

6.	 Decision—the selected design solution and the rational for its selection.
7.	 Execution strategy—the identification of the course of actions to be taken to

incorporate the design solution into the software architecture and rework of
existing work products (e.g., software programmatic design, coded software
units, integrated software components) and documentation items.

14.5.4  Promote the execution strategy
The trade-study execution strategy must be enacted to facilitate the incorpora-
tion of the architectural solution into the software architecture, as well as adjust-
ments to technical and project plans, schedules, and work packages. Each technical
organization should periodically report its progress toward executing each author-
ized change package into its work products. Problems or issues that arise during the
course of assimilating a change package must be elevated to the software engineer-
ing team for deliberation. The change execution strategy may need to be adjusted to
accommodate unexpected complications encountered during the integration of the
change package into the software architecture or other work products.

This page intentionally left blank

263Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00015-X

Software Verification and
Validation Practice 15

CHAPTER

CHAPTER OUTLINE

15.1  Define the V&V strategy.. 265
15.1.1  Establish V&V scope..266
15.1.2  Establish V&V methods..270
15.1.3  Establish V&V procedures..270

15.2  Verify the software architecture.. 271
15.2.1  Verify the requirements baseline...271
15.2.2  Verify the functional architecture..271
15.2.3  Verify the physical architecture...271
15.2.4  Verify the software implementation...272

15.3  Validate the physical architecture... 272
15.3.1  Validate the structural configuration..272
15.3.2  Validate the integrated software configuration................................272

15.4  Document V&V results.. 273

The software verification and validation (V&V) practice confirms the consistency
among elements of the software architecture. This implies the determination that the
software design, as expressed by the architecture, has been properly formulated and
configured to satisfy stakeholder needs. Software verification and validation practices
are sometimes confused with testing and quality assurance. However, within the soft-
ware engineering discipline, V&V involve assessments of the software architecture
to determine its fitness to transition to the software implementation stage of develop-
ment. The software architecture must be continually verified to be internally consist-
ent and validated against stakeholder needs. V&V must substantiate that the software
design will fulfill its intended purpose and, consequently, justifies further investment
in the development project. Figure 15.1 demonstrates how software engineering V&V
confirmations contribute to negotiating the preliminary design review (PDR), critical
design review (CDR) and test readiness review (TRR) milestones.

Verification ensures that each element of the architecture is consistent with the
preceding element from which it was conceived. In the case of software require-
ments, verification ensures that the software baseline was properly derived from
authenticated stakeholder needs. Verification provides an incremental assessment of
the adequacy of the software architecture to fulfill stakeholder needs and project

http://dx.doi.org/10.1016/B978-0-12-407768-3.00015-X

Software aechitecture definition Software implementation

Preliminary architecture
definition

PDR
(Preliminary design review)

Verification Confirmations at PDR:
Requirements baseline continues to reflect

Functional architecture has been formulated
to satisfy the requirements baseline.

stakeholder needs (incorporating approved
change proposals).

CDR
(Critical design review)

Verification confirmations at CDR: Verification confirmations at TRR:
Requirements baseline continues to reflect
stakeholder needs (incorporating approved
change proposals).
Functional architecture, as formulated,
continues to satisfy the requirements
baseline.
Physical architecture, as configured,
continues to satisfy the functional
architecture specifications.
Software implementation accurately
realized the physical architecture.

Structural configuration continues to satisfy
the requirements baselin.
Integrated software configuration will
perform adequately under normal and
excessive operational conditions.
Integrated software configuration can
detect, isolate and attempt to recover form
failures associated with external systems
(including elements of the computing
environment).

Validation confirmations at CDR:

Validation confirmations at TRR:

Structural configuration will satisty the
requirements baseline.

Requirements baseline continues to refelect

Functional architecture, as formulated,

Physical architecture has been configured
to achieve the functional architecture
specifications.
Software implementation plans adequately
address comprehension of the physical
architecture.

continues to satisfy the requirements
baseline.

stakeholder needs (incorporating approved
change proposals).

TRR
(Test readiness review)

Detailed architecture
definition

Unit
implementation

Component integration and
testing

FIGURE 15.1

V&V influence at milestone reviews.

26515.1  Define the V&V strategy

constraints. Verification also confirms the compliance of software implementation
plans and execution against the physical architecture.

Validation confirms that the structural configuration will fulfill its intended use.
This involves confirming that the integrated structural design will adequately per-
form data processing transactions under normal and extreme operational conditions.
Validation assesses the physical architecture robustness to satisfy the requirements
baseline, stakeholder needs, and operational workloads, and provides a stable
framework for anticipated product evolution. This involves assessing the software
response to end-user or external system failures, including failures associated with
elements of the computing environment.

V&V tasks may be considered elements of a software quality assurance or test
and evaluation effort. However, software quality assurance focuses on ensuring
that policies and procedures are complied with, such as software design and coding
standards. Test and evaluation often are focused on qualifying a software product
or process against specifications and determining the readiness of the product for
deployment. Therefore, the tasks identified within this chapter address V&V from
a software engineering context. Figure 15.2 provides an overview of the software
V&V tasks.

These V&V tasks provide a comprehensive scope of verification and valida-
tion as they apply to establishing a meticulous, consistent, and achievable software
product architecture. While there may be other software-related tasks that overlap
these responsibilities, they are adjunct assignments that typically support associated
software development concerns. V&V tasks are intended to legitimize the effec-
tiveness of the engineering merits of the software architecture. Therefore, the tasks
identified within this chapter form the basis for discussing V&V within the soft-
ware engineering context.

V&V tasks are formulated to ensure that the software architecture is complete
and internally coherent. The emphasis is on ensuring the structural integrity, dura-
bility, and simplicity of the software architecture. The V&V tasks are grouped into
four primary activities, as follows:

1.	 Define the V&V strategy.
2.	 Verify the software architecture.
3.	 Validate the physical architecture.
4.	 Document the results of V&V.

15.1  Define the V&V strategy
The V&V activities and tasks must be incorporated into the software engineering
plans. V&V tasks are intended to review completed work products and ensure their
adequacy. This involves examining the assumptions made concerning the opera-
tional scenarios each architectural design mechanism was meant to tolerate. V&V
tasks should be conducted by members of the software engineering team who

266 CHAPTER 15  Software Verification and Validation Practice

possess the skills and understanding to assess the technical features of the design
mechanism being assessed.

15.1.1  Establish V&V scope
The software engineering work products should be reviewed to identify V&V
opportunities. Tasks should be established to interrogate each work product in
terms of its contribution to the software architecture. The software engineering plan
should incorporate V&V tasks by applying resources commensurate with the sig-
nificance of each work product. Table 15.1 identifies a proposed set of V&V task
elements that should be considered when developing the scope of V&V activities.

Software Verfication and Validation Tasks

Establish
Verification and
Validation Scope
(V&V Defintion)

Verify
Reuirements

Baseline
(Perform Verification)

Verify
Functional

Architecture
(Perform Verification)

Verify
Physical

Architecture
(Perform Verification)

Verify
Software

Implementation
(Perform Verification)

Validate
Structural Configuration

(Perform Validation)

Validate
Integrated Software

Configuration
(Perform Validation)

Document
V&V

Results

Establish
Verification and

Validation Methods
(V&V Defintion)

Establish
Verification and

Validation Procedures
(V&V Defintion)

FIGURE 15.2

V&V tasks.

26715.1  Define the V&V strategy

Table 15.1  Software V&V Task Elements

Practice Description Importance

Requirements Baseline Verification Tasks

Verify software
requirements
specifications

Confirm that every software requirement can
be traced to a legitimate stakeholder need or
expectation.

Essential
(mandatory)

Confirm that every requirement is unique, quantifiable,
and testable.
Confirm that the set of requirements are collectively
consistent and nonrepetitive.
Confirm that software requirements have been stated
in a manner consistent with requirements trade-study
records.

Verify software
interface
specifications

Confirm that every external interface is specified in
a manner that is beneficial to the data processing
transactions.

Essential
(mandatory)

Confirm that interfaces provide the data or
information necessary to support data processing
transactions.
Confirm that interfaces do not detract or interfere with
effective or efficient data processing transactions.

Verify operational
models

Confirm that operational models accurately represent
the operational or business process they are intended
to portray.

Essential
(mandatory)

Confirm that every element of the operational
model is properly defined to prevent erroneous
interpretations.
Confirm that operational behaviors establish the
software measures of effectiveness and performance.

Verify
requirements
pedigree

Confirm that every requirement has been sanctioned
by key stakeholders, including the project manager
and software engineering team.

Important
(advisable)

Confirm that the source of the requirement has been
properly documented in the requirements traceability
mechanism.
Confirm that every requirement is substantiated by the
operational models.

Functional Architecture Verification Tasks

Verify functional
decompositions

Confirm that the manner by which software
requirements have been decomposed functionally is
consistent with functional trade-study records.

Important
(advisable)

Confirm that the functional complexity has been
evaluated and the functional decomposition is
consistent with trade-study complexity resolutions.

  (Continued)

268 CHAPTER 15  Software Verification and Validation Practice

Table 15.1  Software V&V Task Elements

Practice Description Importance

Verify behavioral
models

Confirm that the functional behavior models are
consistent with the higher-level operational models.

Essential
(mandatory)

Confirm that external interfaces are consistent with
the interface specifications.
Confirm that the resource availability is consistent with
the computing environment specifications.
Confirm that the functional timeline is consistent with
the operational timeline.

Verify functional
specifications

Confirm that functional unit and component
specifications properly assimilate to satisfy higher-level
specifications.

Essential
(mandatory)

Confirm that functional unit and component
specifications properly reflect the performance
characteristics derived from the behavioral models.

Verify
requirements
traceability
throughout
the functional
architecture

Confirm that the requirements traceability mechanism
is current and provides traceability among elements of
the functional architecture.

Important
(advisable)

Verify
requirements
traceability to
the requirements
baseline

Confirm that the requirements traceability mechanism
is current and provides traceability among top-level
elements of the functional architecture and the
requirements baseline.

Essential
(mandatory)

Physical Architecture Verification Tasks

Verify structural
unit specifications

Confirm that the structural unit specifications
properly assimilate the functional unit specification
characteristics.

Essential
(mandatory)

Verify the
conceptual
design

Confirm that the elements of the conceptual design
coherently represent the dominant data processing
transactions.

Important
(advisable)

Verify the
software
integration
strategy

Confirm that the software integration strategy
resourcefully bridges the software design chasm.

Essential
(mandatory)

Confirm that software integration testing properly
exercises the integrated structural components.

Verify structural
component
specifications

Confirm that each structural component specification
establishes the compound behaviors of integrated
structural elements and design mechanisms (e.g.
graphical user interface elements).

Essential
(mandatory)

(Continued)

  (Continued)

26915.1  Define the V&V strategy

Table 15.1  Software V&V Task Elements

Practice Description Importance

Verify
requirements
traceability
throughout
the physical
architecture

Confirm that the requirements traceability mechanism
is current and provides traceability among elements of
the physical architecture.

Important
(advisable)

Verify traceability
to the functional
architecture

Confirm that the requirements traceability mechanism
is current and provides traceability among functional
units and structural units.

Essential
(mandatory)

Software Implementation Verification Tasks

Verify software
implementation
plans—
implementation
of structural units

Confirm that software implementation plans
adequately account for the effort necessary to design,
code, and test each structural unit.

Informative
(useful)

Verify software
implementation
plans—
integration
strategy
compliance

Confirm that software implementation plans
adequately account for the effort necessary to
assemble, integrate, and test each structural
component.

Informative
(useful)

Verify software
unit conformance

Confirm that the implementation of each software unit
conforms to its structural specification.

Essential
(mandatory)

Verify software
component
conformance

Confirm that the implementation of each software
component conforms to its structural specification.

Essential
(mandatory)

Configuration Validation Tasks

Validate
achievement of
specified data
processing
transactions

Confirm that the physical architecture accurately
facilitates the specified data processing transactions.

Essential
(mandatory)

Confirm that the physical architecture involves
design mechanisms that deal with the full ranges of
appropriate and inappropriate user inputs.
Confirm that the physical architecture involves
design mechanisms that deal with the full ranges of
appropriate and inappropriate interfaces with external
systems.

Validate
achievement
of specified
performance
requirements

Confirm that the physical architecture is adequately
configured to achieve specified performance
requirements.

Essential
(mandatory)

Confirm that the physical architecture is adequately
configured to stabilize resource utilization
requirements.

  (Continued)

(Continued)

270 CHAPTER 15  Software Verification and Validation Practice

V&V tasks should be performed by a team of senior software personnel lead
by a member of the software engineering team. This V&V team must be staffed by
knowledgeable, experienced individuals since they are responsible for ensuring the
completeness and accuracy of the primary architectural artifacts.

15.1.2  Establish V&V methods
For each V&V task the methods of conducting the assessment must be identified.
Verification is intended to establish the accuracy and thoroughness of the archi-
tectural design. Validation is intended to confirm the software product exhibits the
proper operational transactions, features, and quality characteristics. There are a
variety of techniques that can be applied to V&V tasks that fall into four categories
of V&V methods:

1.	 Documentation evaluation. A technical evaluation of architectural diagrams,
drawings, and specifications to achieve V&V objectives.

2.	 Peer review. A technical appraisal of the fitness of an architectural element by
competent colleagues to achieve V &V objectives.

3.	 Static analysis. The application of mathematical or scientific estimation of soft-
ware behaviors, performance, resource utilization, etc., to evaluate the achieve-
ment of V&V objectives.

4.	 Dynamic analysis. The employment of computed statistical measures to quan-
tify the expected levels of performance, resource utilization, and data processing
effectiveness to evaluate the achievement of V&V objectives.

15.1.3  Establish V&V procedures
The procedures for conducting V&V tasks must be prepared to establish the
intended approach for accomplishing a sequence of actions. Procedures provide

Table 15.1  Software V&V Task Elements

Practice Description Importance

Validate recovery
from injected fault
conditions

Confirm that the physical architecture is adequately
configured to detect, isolate, and recover (return
to a previous state of health) from anticipated
faults or degraded modes of operation (computing
environment or external systems).

Important
(advisable)

Validate
execution under
demanding work
loads

Confirm that the physical architecture is adequately
configured to conduct data processing transactions
during periods of stressful workloads.

Important
(advisable)

Validate the
adequacy of
the computing
environment

Confirm that the computing environment is adequately
specified to preserve software product operational
performance.

Essential
(mandatory)

(Continued)

27115.2  Verify the software architecture

detailed instructions pertaining to how a task will be performed, the item(s) under
investigation, and the manner in which findings will be reported. V&V procedures
must clearly identify the item being verified, the project task and work package the
procedure corresponds to, and the recipient(s) of the V&V report.

The V&V procedures must identify the material necessary to be available to
enable the verification task to be performed. The organization that is responsible
for providing an architectural artifact for evaluation must be identified. The sched-
ule date for each V&V task should not be set before the artifact is scheduled to
be completed. Verification tasks can be performed on incomplete products, but this
represents an interim or preliminary verification effort. It is necessary to verify a
completed architectural element before it is transitioned to the next phase of devel-
opment. Therefore, the technical and project plans must account for the V&V tasks
and any corrective actions to be performed before conducting a technical review.

15.2  Verify the software architecture
The software engineering verification tasks address confirming that the software
product architecture is complete, internally consistent, and ready to be transitioned
to the software implementation stage of development. This involves verifying the
elements of the software architecture (requirements baseline, functional and physi-
cal architectures) and confirming that the software implementation has complied
with the structural configuration specifications.

15.2.1  Verify the requirements baseline
The requirements baseline must be verified to ensure that every requirement can be
traced to a stakeholder need and that the baseline represents a complete set of con-
gruent requirements for the software product. The requirements baseline consists of
the software requirements and interface specifications and the operational models
from which they were derived.

15.2.2  Verify the functional architecture
The functional architecture must be verified to ensure that the functional decompo-
sition is noncomplex, and efficiently allocates performance measures among sub-
functions. The top-level functions must be traceable to the software requirements
baseline and operational model. The behavioral models must be verified to accu-
rately express the data processing transactions and control scenarios. The functional
specifications must be evaluated to verify that they accurately comply with the
functional decomposition and express the allocated performance measures.

15.2.3  Verify the physical architecture
The physical architecture must be verified to ensure that the structural configura-
tion provides a noncomplex framework for software implementation, integration,

272 CHAPTER 15  Software Verification and Validation Practice

and testing. The structural unit specifications must be verified to have adequately
assimilated the allocated functional unit specifications and provide traceability back
to the originating functional unit specifications. The conceptual components must
be verified to ensure that they properly reflect the primary data processing transac-
tions. Structural component specifications must be verified to address the integra-
tive functional and performance characteristics resulting from the assimilation of
lower-level elements of the structural configuration. The requirements traceability
within the structural configuration must be confirmed.

15.2.4  Verify the software implementation
Verify that software implementation plans, schedules, and work packages properly
conform to the structural configuration. This involves the effort to design, code, and
test structural units, and perform software integration and testing. Structural assem-
bly work packages must be reviewed to ensure that sufficient resources are allo-
cated to the preparation and verification of software test stubs. Software unit design
peer reviews should provide evidence that verifies compliance with structural unit
specifications. Component integration peer reviews should provide evidence that
verifies compliance with structural unit specifications.

15.3  Validate the physical architecture
The software engineering validation tasks address confirming that the physical
architecture is complete, will satisfy the software requirements baseline, and is
ready to transition to the software implementation stage of development.

15.3.1  Validate the structural configuration
The structural configuration must be validated to ensure that it satisfies the speci-
fied performance measures. This involves engineering analysis and mathematical
determination of data processing transaction time intervals and resource utilization
profiles. Additionally, the performance of the structural configuration must estab-
lish projected operational performance measurements that account for the perfor-
mance of the specified computing environment and interfaces to external systems
and applications. These determinations must ensure that the structural configuration
will satisfy the performance measures specified in the requirements baseline.

15.3.2  Validate the integrated software configuration
The integrated software configuration must be validated to ensure that is satisfies
the specified performance measurements. The software configuration may involve
two or more software configuration items that must be validated to operate effi-
ciently and effectively as an integrated product. This involves engineering analysis

27315.4  Document V&V results

of the integrated software configuration, taking into account the performance
of the specified computing environment and interfaces to external systems and
applications. The integrated software configuration validation must establish pro-
jected operational performance measurements for data processing work loads that
denote normal, severe, and excessive conditions. This determination must estab-
lish the data processing work load that causes the software configuration to begin
to degrade and become unresponsive. This validation may need to utilize software
integration and testing records and computing environment benchmarks to extrapo-
late performance measurements.

The ability of the software configuration to detect and respond to hardware fail-
ures must be validated using engineering analysis or confirmed utilizing software
integration and testing records. The ability of the software configuration to continue
to operate in the specified degraded modes—fail-safe, fail-secure, or fail-soft—
must be corroborated.

15.4  Document V&V results
The V&V findings must be reported. Software design defects must be identified
and isolated to the offending structural configuration elements. These defects must
be analyzed to establish a corrective action plan. Each V&V task must be recorded
and summarized in V&V reports. The record of each V&V task should provide suf-
ficiently detailed information to enable the refurbishment of the defective design
elements. V&V reports should include the following information, at a minimum:

●	 Identification of the architectural elements being evaluated.
●	 Identification of the relationships among the participating elements.
●	 The approach to conducting the V&V task.
●	 The findings that resulted from the investigation.
●	 Recommendations of the V&V participants.

The final report for each V&V task should be uniquely identified and entered
into a logbook to record the V&V task identifier, title, time of task conduct, and
the identifier and date of the report that summarized the findings. The V&V find-
ings must be published and distributed to the software organizations affected by
the results. The findings must clearly identify the defective elements of the soft-
ware architecture, the defect uncovered, and the recommended course of action to
be taken to resolve the defect. The course of action to refurbish a defective design
element must be consistent with the state of the software development effort, the
severity of the defect, and the ability of the defect to be resolved within the current
project schedule. Defects that cannot be resolved before the release of the software
product must be avoided with a workaround that prevents inadvertent user encoun-
ters. Workarounds must be sanctioned by the approval of a waiver to the require-
ment not being fulfilled at the time of software release.

This page intentionally left blank

275Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00016-1

Software Control Practice 16
CHAPTER

CHAPTER OUTLINE

16.1  Configuration administration... 277
16.1.1  Identify architectural elements...277
16.1.2  Maintain architectural status..278

16.2  Process engineering change packages... 279
16.2.1  Record engineering change requests and proposals........................279
16.2.2  Prepare change evaluation packages...279

16.3  Change evaluation... 281
16.3.1  Assess change technical merits..281
16.3.2  Assess architectural consequences...282
16.3.3  Assess technical work package consequences................................282
16.3.4  Assess technical plan consequences...283

16.4  Change assimilation... 283
16.4.1  Publish change notification package...283
16.4.2  Audit the architectural change progress...284
16.4.3  Appraise the project situation...284

16.5  Software repository control... 284
16.5.1  Maintain engineering artifact repository...285
16.5.2  Maintain change history repository..285
16.5.3  Maintain technical risk repository...285

The software control practice involves a set of tasks intended to provide stability
of the software engineering effort, product configuration, and change processing.
These tasks represent the technical version of configuration management and pro-
ject control tasks. This includes the assessment of the potential impact a change
request or proposal may have on the software architecture, technical plans, and
architectural design artifacts.

Software control tasks must maintain configuration records to provide traceabil-
ity among elements of the software architecture, design decision, change requests
and proposals with stakeholder needs (Figure 16.1). Project-level configuration con-
trol is typically enforced at the software configuration item level of the software
product configuration. Software control provides the configuration management
oversight of the evolving software architecture. Therefore, software control tasks

http://dx.doi.org/10.1016/B978-0-12-407768-3.00016-1

276 CHAPTER 16  Software Control Practice

provide a more detailed accounting of the evolving software architecture, trade
studies, risks, and the adjudication and assimilation of change requests and propos-
als. The evolution of the software architecture continues until the structural configu-
ration is submitted for project-level configuration control. This submission signifies
that the software architecture has been judged to be relatively stable, durable to
change, and methodically detailed and specified.

Typical project-level configuration management (CM) practices apply to the
software product configuration and its associated configuration items. Technical
configuration control oversees the complete software architecture to manage the
allocation and traceability of specified software requirements throughout the func-
tional and physical architecture. This includes the identification and specification of
structural units, components, and internal interfaces.

Change requests and proposals must be distinguished between those that affect
the project or contract scope and those that only affect the technical effort. Change

16. Software Control Tasks

16.1.1 Identify
Architectural

Elements
(Configuration Administration)

16.2.1 Record Engineering
Change Requests

and Proposals
(Change Processing)

16.2.2 Prepare
Change Evaluation

Packages
(Change Processing)

16.3.1 Assess
Change Technical

Merits
(Change Evaluation)

16.3.2 Assess
Architectural
Consequences

(Change Evaluation)

16.3.3 Assess Technical
Work Package
Consequences

(Change Evaluation)

16.3.4 Assess
Technical Plan
Consequences

(Change Evaluation)

16.4.1 Publish
Change Notification

Package
(Change Assimilation)

16.5.1 Maintain
Engineering Artifact

Repository
(Repository Control)

16.5.2 Maintain
Change History

Repository
(Repository Control)

16.5.3 Maintain
Technical Risk

Repository
(Repository Control)

16.4.2 Audit the
Architectural Change

Progress
(Change Assimilation)

16.4.3 Appraise
the Project
Situation

(Change Assimilation)

16.1.2 Maintain
Architectural

Status
(Configuration Administration)

FIGURE 16.1

Software control tasks.

27716.1  Configuration administration

requests and proposals that affect the project or contract scope may include aspects
that impact the technical effort. However, such changes involve a more substantial
impact to the project than the technical or engineering consequences. Therefore,
they must be processed formally within the project configuration management sys-
tem. Change proposals or requests that do not impact the project scope should be
processed within the technical configuration control system.

16.1  Configuration administration
Software configuration administration provides the day-to-day supervision for the
configuration of the evolving software architecture. This involves identifying each
element of the software architecture with a project-unique identifier and maintain-
ing the configuration status records for each element.

16.1.1  Identify architectural elements
Each element of the software architecture must be uniquely identified to associate
current and historical information with each element of the architecture. Technical
configuration identification applies to elements of the architecture that emerge dur-
ing the definition of the software architecture. Early in this definition, the archi-
tectural configuration will experience iterative changes as engineering analysis
promotes a credible solution. During this period, it may be prudent to resist assign-
ing configuration identifiers until the design is stabilized.

Identification of architectural elements involves software requirements; func-
tional design hierarchies, behavioral models, and functional specifications; and
structural hierarchies, engineering assemblies, integration strategy, models, proto-
types, and structural specifications. In addition, architectural configuration identifi-
cation must establish product versions and baselines that represent the evolution of
the architectural configuration. Architectural versioning practices should be estab-
lished that provide a common reference point for incorporating design alterations,
modifications, and variations within an individual architectural partition.1 Architec-
tural baselining practices provide a reference point when the three architectural
partitions have been coalesced and represent a unified software architecture.

Architectural element identification facilitates the following actions to:

●	 Track architectural elements to the design artifacts in which they are
characterized.

1 Partition, as used herein, refers to a subdivision of the software architectural representation. Each
partition involves one of the following subdivisions: (1) the requirements baseline, (2) the functional
architecture, or (3) the physical architecture. Allocate means to assign, apportion, or distribute among
constituent parts. It can imply an allocation within a partition of the architecture (among elements
within the boundaries of a single partition) or between partitions of the software architecture.

278 CHAPTER 16  Software Control Practice

●	 Present a coherent representation of the software architecture throughout the
software product’s life cycle.

●	 Establish and maintain engineering records for every element of the software
architecture.

●	 Provide the status of proposed and authorized changes addressing the assimila-
tion of each change package into each architectural element definitions and
architectural documentation.

16.1.2  Maintain architectural status
The software architecture status must be maintained to provide a progress indicator
of the readiness of the architecture to migrate to the next stage of software develop-
ment or deployment. The software architecture as a unified product representation
involves three partitions that may be at different maturity levels. When all three par-
titions of the software architecture have been stabilized and unified, their configu-
ration should be placed under configuration control, and the software architectural
definition should be considered complete.

Within each architectural partition, every element of the software architecture
must be monitored to establish its current status. A suggested set of element status
classifications includes:

1.	 Draft—the element has been identified as a necessary item within the partition
of which the longevity has yet to be determined.

2.	 Primitive—the element has been determined to be a fundamental ingredient
within the partition in which it plays a role.

3.	 Alternate—the element has been conceived as an alternate to a drafted element,
or plays a role in a competing design solution.

4.	 Controlled—the element has been fully defined and specified as part of a parti-
tion that has been placed under technical configuration control.

5.	 Expired—the element has been excluded as part of a partition, but remains
within the element repository for historical significance. Architectural elements
drafted as a primitive or alternate to a design concept and later determined to be
unnecessary may be removed from status-keeping and retained in the repository
for future consideration.

It is important to maintain a record of the architectural status to support progress
reporting; track the assimilation of authorized changes into software architecture
documentation, models, and design artifacts; and ensure that design decisions have
been properly integrated throughout the architecture. The focus must be placed on
the architectural elements that make up the architecture, not its documentation,
model, or artifacts. Requirements, functions, structural units and components, data
items, etc. represent configuration elements at various levels within the architecture
that comprise the software product. Therefore, it is necessary to understand the sta-
tus of the architectural element definitions to derive the status of the overall devel-
opment effort.

27916.2  Process engineering change packages

16.2  Process engineering change packages
Engineering change requests and proposals must be formally processed to ensure
that enhancements suggested by stakeholders or software development team mem-
bers are properly considered. An engineering change request represents a suggested
modification to the software architecture that is within the scope of the existing pro-
ject. This means that the change, if adopted, should not impact the project workload
or schedule. A change proposal represents a modification that is outside the current
scope of the development effort and would require an adjustment to project funding
and/or schedule deadlines. A proposed modification that is determined to clarify a
stakeholder need or correct a faulty assumption should not be considered a change
that requires change control.

16.2.1  Record engineering change requests and proposals
Every change request or proposal should be recorded in a change-tracking logbook
or repository. This record of requested modifications to the software architecture
provides a measurement of the stability of the software architecture.

The number of changes registered against each partition of the architecture
should become more infrequent as the architecture evolves and matures. Ideally, the
number of modifications requested against a partition of the architecture will cease
prior to the technical review where the partition is to be presented.

An engineering change record should include the following information to per-
mit tracking and status reporting:

●	 Change request or proposal number
●	 Date initiated
●	 Organization that initiated the change
●	 Class of change
●	 Priority
●	 Primary architecture partition impacted (requirements baseline, functional or

physical architectures)
●	 Disposition
●	 Disposition date
●	 Assimilation status

16.2.2  Prepare change evaluation packages
A change evaluation package must be assembled to provide a consistent basis for eval-
uation of a requested architectural modification. The change evaluation package should
consist of the principle architectural artifacts that are affected by the change. A change
evaluation package should include sufficient information, documentation, and architec-
tural artifacts to enable evaluators to assess the suitability of a requested change to be
incorporated into the software architecture, technical and project plans. Therefore, a
change evaluation package should include the content noted in Table 16.1.

280 CHAPTER 16  Software Control Practice

Assembled change evaluation packages should be provided to change evalua-
tion team members for consideration. The change control administrator should con-
firm that each member of the change evaluation team has received the package and
can accommodate the change evaluation effort within their work assignments and
budget constraints.

Table 16.1  Suggested Content for Change Evaluation Package

Content Description

Change origin and
tracking

Provide the source information pertaining to the:
●	 Origins of the requested change
●	 Registered identification number
●	 Originating entity or source of the request
●	 Date the request was recorded into the change-tracking

system
Change description Provide a vigilant description of the requested architectural

modification, including:
●	 Architectural element(s) and the partitions to which they are

incorporated within which will be affected by the requested
modification

●	 The modification to be employed in place of the current
architectural element(s)

●	 The anticipated benefits resulting from the architectural
modification (e.g., operational improvements, customer or
consumer acceptance, expanded market penetration, ease
of use, reduced training and education support required for
software employment)

Architectural
artifacts pertaining
to the evaluation

Identification of the architectural drawings, documentation,
etc. that are provided as an attachment to the package or their
digital library locations. Instructions for locating and accessing
the artifacts should also be provided.

Evaluation
instructions

Provides the instructions for evaluators on how the requested
modification should be assessed and emphasizes the areas of
concern with the proposed change adoption. Should focus on
determining the:

●	 Technical merits of the change
●	 Architectural design consequences imposed by the

modification (e.g., architectural complexity)
●	 Technical plan and schedule consequences, if any
●	 Technical work package consequences, if any, resulting

in the need for rework, artifact revisions, software
implementation, and testing implications

Evaluation
milestones

Identifies the milestones associated with:
●	 Consolidating individual evaluations into a unified

determination for the change request
●	 Presenting the determination to the software engineering

integrated product team (SWE-IPT)
●	 Presenting the determination to the software change control

board (CCB)

28116.3  Change evaluation

16.3  Change evaluation
The change evaluation team members should assess the proposed architectural
modification to determine the merits and consequences of adopting the change. The
evaluation team must substantiate the value proposition inherent with a change,
involving:

●	 Technical merits of the proposed modification (improvements in functionality,
performance, usability, supportability, and operational suitability).

●	 Consequences implied with adopting the proposed modification to the software
architecture (increased complexity, scope (depth and breadth) of the change,
and the ripple effect to other architectural elements by adopting the
modification).

●	 Consequences of adopting the modification to the technical plans and schedule.
●	 Consequences to the technical work packages and resource allocations.
●	 Additional resources that accompany a change proposal.
●	 That each technical organization can accommodate the change assimilation

effort within their workload capacity, budget constraints, and proposed work
package reallocations.

Change proposals may represent a burden for the software development effort
to contemplate given the availability of resources within the current structure
of the project. Additional resources may accompany a proposed change to offset
the rework and realignment of architectural design characteristics. The additional
resources needed to assimilate a change must be determined to be sufficient to
counteract the amplified workload involved with incorporating the change within
the software development agenda.

16.3.1  Assess change technical merits
The change package must be evaluated to determine the technical merits associ-
ated with adopting the proposed modification. The business case should have been
presented in the change description with the identification of the anticipated ben-
efits to making the change. The technical merits of a proposed modification to the
software architecture should address how the modification contributes to improv-
ing the product performance, usability, and supportability. Technical merit implies
identifying the architectural strengths and weaknesses accompanying the modifica-
tion. These technical merits should address how the modification would contribute
to achieving the architectural guidelines and performance requirements.

Technical merit implies attributes that cannot be directly measured or scientifi-
cally substantiated. It suggests the opinions or applied competencies by members
of the evaluation team after sufficient investigation and open debate concerning
the proposed modification. The assessment of change package technical merits is
intended to determine if a proposed change would enhance the operational perfor-
mance and architectural integrity of the software product. The following influences

282 CHAPTER 16  Software Control Practice

should be considered when assessing the technical merits of a proposed modifica-
tion to the software architecture:

1.	 How will the modification affect the effectiveness of data processing
transactions?

2.	 How will the modification affect the structural stability (ability to resist distur-
bances caused by changes in the operational or computational environments)?

3.	 How will the modification affect the product scalability (ability to adjust to load
changes in the operational environment)?

4.	 How will the modification affect the efficient utilization of computing
resources?

5.	 How will the modification affect the complexity of the software architecture?

16.3.2  Assess architectural consequences
Every proposed change will affect the stability of the architecture by the intro-
duction of new design elements or mechanisms into an existing architectural
framework. Changes promoted early in the software engineering effort may not
experience as significant repercussions as those considered later in the develop-
ment schedule. Determining the architectural consequences of adopting a proposed
change involves comprehending the pervasiveness of the change in terms of the
architectural elements affected by the modification. Every architectural element
associated with or tightly coupled with elements directly impacted by modification
must be discerned. Elements that may be disturbed by the change will require atten-
tion to comprehend the far-reaching impact of the proposed alteration.

The following arguments should be considered when assessing the technical
merits of a proposed modification to the software architecture:

1.	 How invasively will the change extend throughout the software architecture?
2.	 What is the collective magnitude of the architectural modifications?
3.	 What are the architectural ramifications associated with the proposed

modifications?

16.3.3  Assess technical work package consequences
The current technical effort to complete the software development project must be
reassessed taking into account the strenuous effort associated with incorporating a
change into the prevailing software architecture and its artifacts. This involves the
rework of existing documentation, models, and diagrams (artifacts) to reflect the
alterations stimulated by the change. This involves the effort necessary to:

●	 Update specifications, diagrams, drawings, documentation citations, and
models.

●	 Revise software implementation work assignments and plans, including the
necessity to rework previously coded and tested software units or components.

28316.4  Change assimilation

●	 Revise software test and evaluation work assignments, plans, and procedures.
●	 Accommodate the impact of the change, if any, into software post-development

processes.

The anticipated rework and alterations to software development tasks must be
estimated to provide a complete understanding of the magnitude of the proposed
change on the technical work packages. Task dependencies must be considered
when adjusting work package definitions. It is important to recognize any delays in
subsequent tasks incurred by work package alterations. Task resource budgets must
be reassessed to ensure that they are adequately provisioned to support the remain-
ing technical efforts. This assessment must account for the work remaining to com-
plete the software development effort and the resources (funding, labor, equipment
items, etc.) appropriate for effective task execution.

16.3.4  Assess technical plan consequences
The set of revised technical work packages should be hypothetically incorporated into
technical plans and schedules to identify any potential impact to achieving technical
objectives. The impact of revised work packages must be projected upon the inte-
grated master plan and schedule to identify conflicts, shortages, or inefficiencies that
may emerge. The various technical plans should be reexamined to determine if the
workload and resources can be revamped to choreograph a proper execution scheme.

16.4  Change assimilation
Change assimilation addresses the software control tasks responsible for ensuring
that authorized changes are properly engineered and integrated into the software
architecture. Change assimilation begins when the change request or proposal is
approved by the chairperson of the technical or project-level CCB. The change noti-
fication package should be prepared before the CCB convenes to approve the change.

If the business case, technical merits, and consequences corroborate that a pro-
posed change is advantageous and achievable, then the evaluation team should
advocate for the change to be undertaken. The final authorization of a change
request or proposal resides with either the technical or project-level CCB. While the
software architecture is controlled by the technical CCB, the chief software engi-
neer or chairperson of the technical CCB can ratify the change to be undertaken.
However, if a change proposal involves the provisioning of additional resources for
the project to accommodate the proposal, then only the chairperson of the project
CCB or project manager can ratify the proposal.

16.4.1  Publish change notification package
The change notification package must be prepared to identify the architectural ele-
ments and design material that will be impacted by the change approval. The

284 CHAPTER 16  Software Control Practice

preliminary software design solution may have been submitted with the change
request. However, the actual software design solution must be prepared before and
incorporated into the architecture definition, models, diagrams, specifications, doc-
umentation and artifact repository. The change notification package should identify
the responsible organization for each item to be changed, and the date the change
is to be completed. The completed change notification package must be published
and made available to the responsible organizations to initiate the assimilation of the
change.

16.4.2  Audit the architectural change progress
The software organizations participating in the assimilation of a change package
must be periodically queried to appreciate the progress of each change assimilation
effort. The architectural change audit must track the status of change inclusion in
the software architecture, specifications, diagrams, drawings, documentation, tech-
nical plans, and models. The status of the change assimilation is not to be consid-
ered complete until the change of all affected artifacts and technical plans reflects
the modification.

16.4.3  Appraise the project situation
The status of change assimilation must be evaluated within the total project situ-
ation. The status of software engineering tasks that involve the assimilation of
a change package should be given special attention due to their volatile circum-
stances. When all of the tasks for a given change assimilation are completed, a final
audit of the change integration into the software architecture should be accom-
plished. When the final audit has been satisfied, then the change can be classified as
satisfied and transitioned to the change history repository.

Architectural versioning should identify the set of change requests and propos-
als that are addressed by each engineering version of the software architecture and
its artifacts. This implies that the evolution of the software architecture definition
must be under technical version control. All engineering artifacts must be aligned
with some version of the architecture. This enables all software specifications, dia-
grams, drawings, documents, and models to be associated with one or more ver-
sions of the software product architecture. The synchronization of the software
engineering tasks and the architecture definition and its artifacts must be a funda-
mental software engineering practice. It is necessary to understand the engineer-
ing evolution of the software architecture to account for the changes that promoted
each version of the software product.

16.5  Software repository control
There is a prerequisite for maintaining repositories for capturing and preserv-
ing historical information concerning the evolution of the software architecture

28516.5  Software repository control

definition throughout the execution of the software engineering effort. The primary
repositories are addressed in the following sections.

16.5.1  Maintain engineering artifact repository
The engineering artifact repository is intended to capture the wide range of engi-
neering artifacts generated throughout the software engineering effort. This
involves establishing repository petitions and folders for analytical, design, and
documentation artifacts once their need is recognized. Once an artifact has been
completed it should be promoted to a controlled folder associated with each version
of the software architecture. A subfolder should be established within an architec-
tural element folder to capture trade-study material, reports, and decision rationale.

16.5.2  Maintain change history repository
The software change history repository is intended to capture the history of every
change request and proposal entertained by the software engineering team. It
should capture the change request or proposal content, change evaluation material,
CCB determination results, change notification package, and change assimilation
audits.

16.5.3  Maintain technical risk repository
The technical risk repository is intended to capture every risk acknowledged by the
software engineering team. This includes risks associated with the software archi-
tecture definition, computing environment definition, software implementation,
software test and evaluation, and post-development processes. The risk repository
should capture the initial risk identification memoranda, assessment reports, abate-
ment strategy, and risk monitoring reports.

This page intentionally left blank

SECTION

3Stages of Software
Engineering
Application

This section addresses the software engineering and related organizational tasks
that should be accomplished for each stage of the software life cycle. These tasks
are arranged by the functional organizations involved in the software development
effort, including software engineering, computing environment preparation, soft-
ware implementation, post-development process preparation, and software test and
evaluation.

A representation of the software life cycle is shown in Figure 1. This set of life-
cycle stages is used to describe how a software product should be developed, dis-
tributed, and supported. The software life cycle begins with the identification of
requirements for the software product and the computing environment. The prod-
uct then is designed during architectural definition, which develops the specifica-
tions for each of the functional and physical units and components. Once all of the
physical units and components have been specified the product and computing envi-
ronment implementation can commence. Once the software units and components
have been integrated into the complete product configuration the product acceptance

288 SECTION 3 ﻿  Stages of Software Engineering Application

testing can be conducted. Successful completion of product acceptance testing leads
to the post-development stage, which involves software distribution, training, and
sustainment. The post-development stage continues until the software product no
longer requires sustainment. These life-cycle processes need to be developed con-
currently so they are ready to support product distribution and support.

Within each stage of the software life cycle the software engineering process is exe-
cuted, as necessary, to evolve the product from a concept to a complete, tested product.
The software engineering process provides a basis for dealing with complexity, under-
standing the risks associated with design alternatives, while deriving a design approach
that can be implemented within program cost and schedule objectives. Whenever the
product is being designed during development, implementation, or support, the soft-
ware engineering process should be employed. The software engineering process pro-
vides the disciplined approach to understanding alternative design concepts, their risks,
and the potential impacts on program objectives. This enables a software engineering
team to make better decisions concerning the best architectural design configuration.

During this discussion of integrated product and process development the soft-
ware project hierarchy shown in Figure 2 is used. It addresses an integrated product
and process context view of the organizational roles and responsibilities.

Software: The integrated system that is comprised of the software product, its
operational computing environment definition, and associated post-development
software support processes.
Product: The software that is defined, designed, implemented, and tested to sat-
isfy stakeholder needs and expectations.
Computing environment: The computing hardware (mainframes, servers, work-
stations, desktop computing systems, etc.), operating systems, database manage-
ment systems, and other products, communication access, and networks that
provide the operational environment for the product.
Post-development processes: The processes that must be established to distribute the
software product to customers or consumers, supply training resources and mate-
rial, and support and evolve the software product throughout its useful life.
Replication: The process by which the software product and user documenta-
tion is reproduced for digital distribution. Replication is also responsible for

FIGURE 1

Software life-cycle stages.

Requirements
Definition

Implementation

Preliminary Detailed Code & Test Integration Product Testing
Acceptance

Testing

Software Development

Post-development Process Preparation

Computing Environment Preparation

Definition Design Implementation Qulaification Supports software
Product Testing

Post-development Process
Operations

Distribution Oprations
Training Operations
Customer Support Operations
Product Support Operations

Process Definition Process Design Process Implementation Qualification

Architecture Definition

289Stages of Software Engineering Application

packaging the resulting digital and printed material for distribution to vendors,
customers, or consumers.
Distribution: The process by which the packaged product is transferred from its
originating source to distributors, retail sales stores, customers, or consumers.
Training: The process of transferring to end users knowledge on how to operate
the software product in support of business concerns, personal duties, and edu-
cational or entertainment purposes.
Sustainment: The process that resolves product deficiencies and enhances the
product throughout the post-development stage of the product life cycle. Software
sustainment is the process by which software problem reports are documented,
investigated, and resolved, and fixes are distributed. Software sustainment may
be discussed as two primary activities: customer support and software support.
Customer support involves the operations necessary to provide online or phone
support associated with a help desk. It involves providing assistance to customers
in need of experienced software product installation, configuration, or problem
reporting. Software support involves the recreation of reported problems and the
isolation of the source of the problem within the software structural configuration.
This enables the problem to be corrected and a patch to be issued to revise the
executable files. If a patch can not be distributed in an acceptable amount of time,
then operational workarounds should be devised and provided to customers expe-
riencing the problem. Enhancement to the software product may involve a series
of secondary projects to develop new versions or releases of the software product.

The following four chapters present the tasks associated with each of the stages
of the software life cycle. They identify the products that are produced and the
tasks by which the products are generated. In addition, they describe the technical
reviews that are to be conducted near the conclusion of each stage. Within these
chapters the tasks associated with each software organization are identified and
described. Each software organization participates in the software engineering inte-
grated product team (SWE-IPT) to bring their unique perspectives to the engineer-
ing of the product. The software organizations that are addressed include:

●	 Software engineering integrated product team
●	 Software implementation
●	 Computing environment preparation
●	 Post-development process preparation
●	 Software test and evaluation

FIGURE 2

Software integrated product and process hierarchy.

Software
(System)

Software
Product

Replication
Product

Distribution
Process

Training
Process

Sustainment
Process

Post-development
Processes

Computing
Environment

This page intentionally left blank

291Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00017-3

Software Requirements
Definition 17

CHAPTER

CHAPTER OUTLINE

17.1  Products of software requirements definition... 292
17.2  Software engineering integrated product team

(software requirements definition stage)... 295
17.3  Software implementation (software requirements definition stage)...................... 298
17.4  Computing environment preparation (software requirements

definition stage)... 299
17.5  Post-development process implementation (software requirements

definition stage)... 299
17.6  Software test and evaluation (software requirements definition stage)................ 300
17.7  Reviews, milestones, and baselines (software requirements definition stage)...... 301

The purpose of the software requirements definition stage of development is to trans-
late stakeholder needs, expectations, and constraints into a balanced and achievable set
of software requirements. This involves developing the specifications for the software
product, computing environment, and the post-development processes. A key artifact
of this stage is a model of the business or embedded systems process it is intended to
enable. The operational model forms the basis for deriving the software product, com-
puting environment, and software interface requirements. The computing environment
imposes constraints on how the software product operates to support data transaction
processes. The software requirements definition stage is focused on understanding the
full range of data processing functions the software product must perform.

The operational model provides a basis for assessing the overall software perfor-
mance under a wide range of situations and workloads. The computing hardware,
workstations, networks, and related technologies all contribute to the performance
of the software solution. The computational environment should not be prematurely
selected until the operational requirements are analyzed. Analysis of the operational
environment establishes the integrated software performance requirements con-
strained by the computing equipment that comprises the computing environment.
The software product may be designed to perform more efficiently with certain com-
puting equipment. The analysis conducted during this stage of development should
result in architectural decisions that allocate requirements among the computing
environment and the software product.

http://dx.doi.org/10.1016/B978-0-12-407768-3.00017-3

292 CHAPTER 17  Software Requirements Definition

The software requirements definition stage occurs one time during the software
development effort unless an incremental or evolutionary development strategy has
been chosen. This stage generates the requirements specifications against which
the computing environment and software product will be developed. The software
requirements analysis practice will be conducted throughout the software engineer-
ing effort to resolve challenges or risks associated with the software product or
post-development process requirements.

During this stage of development the focus is to ensure that the requirements
specified for the software product and post-development processes are complete,
feasible to achieve within project objectives and constraints, and introduce mini-
mal risks to the project. Functional analysis and allocation should be performed to
decompose software product requirements and allocate them among the software
configuration items and elements of the computing environment. At this stage of
development, the software product physical architecture should identify the soft-
ware configuration items and the elements of the computing environment. This
results in specifications for the software configuration items, the software external
interfaces, and the computing environment.

Staffing for the software implementation, computing environment implementa-
tion, post-development, and test and evaluation organizations should be limited to
the personnel qualified to support the software engineering effort. There are no ben-
efits to be secured by excessively staffing these organizations until the state of the
software architecture warrants workforce escalation.

The software requirements baseline must be established to control the require-
ments against which the product is to be developed. This is a technical baseline that
is to be managed by the software engineering integrated product team (SWE-IPT)
until the formal functional requirements baseline is established. The software require-
ments baseline should not be established until the software architecture has been ver-
ified to be adequately specified, congruent, and amenable to all stakeholders. Once
the software requirements baseline has been established, the technical change con-
trol board (CCB) must approve changes to this baseline. Once the functional require-
ments baseline is established, the project-level CCB must approve changes to it.

Whenever there is a proposed change to the requirements the SWE-IPT should
evaluate the impact of the change on the requirements baseline. The software
requirements analysis tasks should be performed to identify alternative require-
ments assertions that satisfy the proposed change. The software analysis practice
should be performed to determine the best requirements statement to be specified.

17.1  Products of software requirements definition
The following products must be generated during this stage of software development:

1.	 Operational model. The operational model is intended to depict how the
product will be utilized to facilitate a business or embedded system process.
The operational model should treat the software product as a “black box”

29317.1  Products of software requirements definition

and should not attempt to identify any aspect of the product design or inner-
workings. The operational model should depict how the software product works
cooperatively with operators and elements of the computing environment to
accomplish its intended purpose. The operational model should address the
functional sequences (including concurrent data processing transactions), the
duration of each task, and the exchange of data (interfaces) with elements
of the computing environment, other systems or applications, and operators.
The resources that are necessary to conduct each function should be identified
and whether these resources are temporarily seized, consumable, or shared.
The operational model must address the level of data processing necessary to
establish the test threads that will be used to determine the acceptability of the
product.

2.	 Initial software behavioral model. The software behavior model is intended
to depict how the software product works cooperatively with operators, and
the computing environment to accomplish data processing transactions. The
behavior model represents a decomposition of the operational model with an
emphasis on understanding how the operational functions allocated to the soft-
ware product will be performed. The software behaviors describe the functional
flow, control flow, and data flows associated with the accomplishment of each
transaction. The behavioral model should address each data processing transac-
tion, as necessary, to adequately specify the software behaviors at the software
configuration item or product level. The model represents what data processing
functions must be performed, and should not represent how it is physically or
structurally accomplished.

3.	 Software requirements specifications (SRS). The functional and performance
requirements that have been allocated to the software product must be docu-
mented in the SRS. The requirements may be allocated among multiple
software configuration item specifications. It should capture the functional
behaviors, data exchange requirements, and interface requirements including
the human–machine interface requirements identified by the operational
model. These interface requirements may be documented in separate software
interface specifications (see item 5). The software distribution, training, and
sustainment requirements must also be specified. These post-development
requirements may be documented in separate post-development concept
documents (see item 7). The software requirements specification should
establish a matrix that identifies the software qualification method (analysis,
demonstration, inspection, or extrapolation) that applies to determining success
of a test.

4.	 Computing environment requirements specifications. The operational require-
ments that have been allocated to the computing environment should be docu-
mented in the computing environment requirements specification. It should
identify the computational processing resource requirements, including com-
munication and network bandwidth, the minimally acceptable and objective
number of concurrent transactions to be processed, and other transaction quality

294 CHAPTER 17  Software Requirements Definition

metrics1 , such as: interoperability, portability, scalability, security, maintainabil-
ity, complexity, and throughput. If the software product is expected to operate
on more than one computing platform, then more than one computing environ-
ment specification may be prepared to account for the different characteristics
of each platform.

5.	 Software interface requirements specifications. The operational data exchange
requirements should be documented to address all interfaces, including human–
machine interfaces. The software interface requirements specification should
identify each interface among the product, other systems, applications, and ele-
ments of the computing environment. Each interface requirement must be speci-
fied in terms of the informational content of the exchange, as well as the means
of transmitting data among the participating configuration items.

6.	 Software test and evaluation plan. The software test and evaluation plan should
be prepared to address the software acceptance testing strategy and how and
when software quality assurance inspections will be conducted. The software test
strategy should address the software qualification methods as they apply to each
requirement specified by the SRS. Software quality assurance inspections should
ensure that the software development tasks are being performed according to
established procedures and that the product requirements, architecture, and imple-
mentation are converging toward a complete and consistent product solution.

7.	 Software post-development process concept documents. The preliminary
concepts for how the product will be replicated, distributed, and supported, and
how training will be conducted should be prepared. These concept documents
should be allowed to evolve as the product architecture is developed so that
they will reflect the product architectural decisions made during the architecture
definition. During software implementation, there should be a parallel effort to
implement and test these post-development processes so that they are available
when the product has successfully completed acceptance testing.

8.	 Software requirements traceability matrix. The requirements traceability matrix
should initially identify the source of each requirement and its dependencies to
the computational environment requirements. The source of a software require-
ment may include, for example, a stakeholder, legal regulation, standard prac-
tice, company policies or guidelines, operational model, or derived by analysis.
This matrix is intended to be evolved throughout the software post-development
(distribution, training, and sustainment) efforts. During this requirements defini-
tion stage, the requirements specified for the software product and interfaces
should be traced back to their source, for example, customer needs statements,
statements of work, project authorization documents, market surveys, trade-
study results, recommendations, and decisions. This matrix can be maintained
as a single product or separated into two or more individual matrices for each of
the identified software configuration items.

1 Distributed Computing Environment, Software Technology Roadmap, http://www.sei.cmu.edu/str/
descriptions/dce.html

http://www.sei.cmu.edu/str/descriptions/dce.html
http://www.sei.cmu.edu/str/descriptions/dce.html

29517.2  Software engineering integrated product team

17.2  �Software engineering integrated product team
(software requirements definition stage)

The lead software engineer should establish and chair the SWE-IPT. The SWE-IPT
represents the technical working group of software specialists and subject-matter
experts who will contribute to the software engineering tasks. The SWE-IPT should
be a multidisciplinary team whose membership represents the various software
disciplines, including software engineering, software implementation, computing
environment implementation, software post-development process implementation,
software test and evaluation, software development management, safety, security,
and human–system integration, as applicable.

1.	 Develop the operational model. The SWE-IPT should conduct software require-
ments analysis tasks to capture stakeholder requirements and constraints as
they relate to the business or embedded system processes for which the soft-
ware is being developed. Stakeholders2 typically include customers, marketing,
business management, partners, suppliers, and subcontractors. An operational
model should be developed to depict the various threads through the business
processes, including the business rules that govern how the process is conducted
and how the process responds to the various situations that may be encountered.

2.	 Develop the initial functional behavioral model. The SWE-IPT should conduct
functional analysis and allocation to decompose the abstract or challenging
operational tasks allocated to the software product. Functional analysis estab-
lishes a more detailed model or representation of how the software product
and elements of the computing environment should collaboratively enable the
operational processes. Functional analysis accomplishes this by decomposing
high-level functions into lower-level functions, arranging functions in logical
sequences, and allocating performance requirements from higher- to lower-level
functions. Data flows among functions should be derived from the data flows
identified in the operational model. Abstract operational data should be decom-
posed into a set of software data elements and each assigned a unique identifier.

3.	 Synthesize conceptual design alternatives. The SWE-IPT should conduct
software design synthesis to establish initial concepts for the structure of the
physical architecture.⁎ The initial structural concepts should identify primary
structural components and their interfaces. Each element of a structural concept
should be traceable to the functional architecture allowing for some consolida-
tion of similar or common functionality to be assigned to a structural compo-
nent. The structural concepts may be presented as a product hierarchy or as a
product block diagram. The product block diagram should describe the product
structural layout, internal interfaces among the structural components, and
external interfaces with elements of the computing environment.

2 Stakeholders also include each of the software development organizations and representatives from
the project management team.

296 CHAPTER 17  Software Requirements Definition

The initial structure concepts may establish, if determined necessary, more than
one software configuration item to provide a satisfactory solution. Alternative
structural concepts should be considered and viable structures evaluated via trade
studies and risk assessments during systems analysis. If multiple software con-
figuration items are identified, then the project plan, work breakdown structure
(WBS), and specification tree must be revised to reflect this architectural decision.
As the physical architecture matures, it may challenge the validity or cor-
rectness of the functional architecture or operational model. In addition, the
physical structure of the product may affect the design of or requirements for
the computational environment. These conflicts must be captured in problem
reports, viable alternatives identified, and the alternatives evaluated against pro-
ject objectives, product quality metrics, and risks.
⁎Note: This is where the process described in this book disregards the design
of the computing environment and focuses on the design of the software product.
Until this time, there were trade-offs between the computing environment and
the software product that needed to be considered to achieve a proper balance
between the computing environment and software product requirements and
performance. It makes sense that the computing environment implementation
team would undertake a similar approach to synthesizing and analyzing
computing environment design alternatives. Since this book is about software
engineering, computing environment design and implementation have not been
addressed in detail.

4.	 Analyze product alternatives, conflicts, and trade-offs. The SWE-IPT must
evaluate identified conflicts between the software requirements and functional
and physical architectures to determine a preferred architectural solution.
The architectural alternatives must be analyzed to determine if they can be
achieved within project cost and schedule objectives and to identify conflicts
with stakeholder needs and expectations. The architectural alternatives should
be prioritized and a preferred solution recommended to the SWE-IPT. The
preferred design alternative should be analyzed to ensure that it represents a
congruent combination of software requirements and functional and physical
architectures.
The preferred design alternative should be analyzed and evaluated to under-
stand the implementation challenges and to identify any risk inherent with its
adoption. Identified risks must be assessed to devise approaches for eliminat-
ing, avoiding, or reducing risks to an acceptable level. It is imperative that risks
be identified, quantified, and mitigated before adopting a design alternative.
Adopting architectural decisions with inherent risks places the software devel-
opment project in jeopardy. Architectural modifications later in the project will
incur greater cost and potential schedule delays. Risk assessment reports must
be prepared to capture the results of the risk appraisal including the probability
of occurrence and the consequences to the project should the risk be realized.
If the preferred architectural alternative does not impact project and techni-
cal plans, it can be adopted as an architectural design decision. Architectural

297

alternatives that negatively impact the scope of technical plans must be docu-
mented in a software change proposal. Change proposals must be submitted to
the technical CCB for authorization. If a change proposal impacts project plans
beyond the authority of the technical CCB, it must be submitted to the project
CCB for authorization. These software change proposals represent project-level
adjustments that require additional resources and modification of project plans,
schedules, and resource allocations.

5.	 Establish the software requirements allocations. As the operational model
matures, the functional and physical architectures should reinforce that the
product requirements are achievable within project objectives. The operational
model should be utilized to allocate requirements among the software configura-
tion items, the computing environment, and the software product interfaces. The
SWE-IPT should prepare requirements specifications for these elements of the
software architecture. The SWE-IPT should prepare the requirement traceability
matrix to associate stakeholder needs and expectations, project objectives, and
facets of the operational process to the requirements allocated among the archi-
tectural elements.

6.	 Prepare software post-development process concepts. The SWE-IPT should
evaluate the requirements for each of the software post-development processes.
The SWE-IPT should apply the systems engineering practices to establish an
initial concept of operation for each of the software post-development pro-
cesses. Each of the software post-development process concept documents
should address the scope of the process, its operational behaviors, and initial
functional and physical architectures.

7.	 Prepare and document risk mitigation plans. The SWE-IPT must prepare risk
mitigation plans for each identified risk. Risks must be continually monitored
until the risk is eliminated. Risk mitigation plans should identify the approach
to monitoring a risk, the criteria that would activate contingency plans, and the
course of action that would be executed if the risk were deemed unavoidable.

8.	 Revise the work breakdown structure. The SWE-IPT must review and update
the work breakdown structure to reflect the impact of architectural decisions and
adopted change proposals. The work packages, associated tasks, and resource
allocations should be adjusted to reflect the enhanced understanding of the effort
that will be necessary to architect, implement, and test the software product and
post-development processes. Some tasks may be eliminated or reduced in scope,
others will demand more time and resources, and new tasks might be created.
The WBS must be a flexible mechanism that can be adjusted from initial plan-
ning estimates to reflect architectural decisions and adopted change proposals.

9.	 Refine the product specification tree. As a result of identifying the software con-
figuration items, the requirements for software documentation must be revisited
to align the specification tree with the adopted architectural structure of configu-
ration items. The specification tree should reflect the software hierarchy of doc-
umentation required for each identified configuration item. It must be extended
and updated to reflect the software plans, specifications, documents,

17.2  Software engineering integrated product team

298 CHAPTER 17  Software Requirements Definition

	 models, drawings, or other forms of documentation necessary to manage the
development of each configuration item.

10.	 Refine project and technical plans. The plans for the remaining stages of
the software development project should be revisited to reflect the enriched
understanding of the scope of the development effort. The project and techni-
cal plans have to be dynamic documents that are continually updated to reflect
architectural decisions and authorized change proposals. Project plans must
illuminate the scope of work remaining to be performed and amplify the prob-
ability of successful execution.

11.	 Prepare the software nomenclature register. The SWE-IPT should prepare
the software nomenclature register3 to designate unique identifiers, names,
and definitions for the elements of the software architecture. Registry entries
should include the elements identified by the operational model, and the initial
functional and physical architectures. Data items should be defined in terms of
their purpose, type (e.g., constant, variable, string, integer, Boolean, or date),
security classification (if applicable), units of measurement, and acceptable
range of values. The nomenclature register is intended to ensure that the entire
software development team has knowledge of the authorized architectural ele-
ment names, identifiers, and definitions. This is to ensure that architectural
elements are properly exploited and that duplicate names or identifiers are not
assigned.

12.	 Prepare for the software requirements review (SRR). The SWE-IPT should pre-
pare for the SRR, which is a formal project-level review performed to exhibit
the status of the software architecture to project management personnel, cus-
tomers, and other stakeholders. The identified risks and their abatement plans
must be reviewed. Finally, the modifications to the WBS, specification tree,
and project plans should be promoted. The architectural decisions that drove
the major changes to the project plans should be identified and traced to the
impact on the WBS, specification tree, and project plans. The software updated
technical plans and outcome of software quality inspections and audits should
be reported.

17.3  �Software implementation (software requirements
definition stage)

1.	 Participate in the SWE-IPT. Senior representatives of the software implementa-
tion organization should participate in the SWE-IPT to contribute to making
constructive software requirements specification and allocation decisions.
Representatives from software implementation contribute their knowledge of

3 Originally referred to as a data dictionary. However, it is necessary to address the full range of archi-
tectural elements in a nomenclature registry.

29917.5  Post-development process implementation

the computing languages, design patterns, and implementation challenges to
software engineering tasks.

2.	 Identify software implementation challenges, constraints, feasibility, and risks.
The representatives of the software implementation organization should identify
implementation challenges, constraints, and risks associated with the specified
software requirements. These representatives are essential to ensuring that the
requirements specified for the software product are achievable.

3.	 Identify the software development environment. The software implementation
organization should identify elements of the software development environ-
ment that will be necessary to implement, test, and debug the evolving software
architecture.

17.4  �Computing environment preparation (software
requirements definition stage)

1.	 Participate in the SWE-IPT. Senior representatives of the computing environ-
ment organization should participate in the SWE-IPT to contribute to making
constructive software requirements specifications decisions. Representatives of
the computing environment organization bring their knowledge of computing
hardware, networking, communications, operating systems, middleware, and
computing technology challenges to software engineering tasks.

2.	 Identify computing environment implementation challenges, constraints, feasi-
bility, and risks. The representatives of the computing environment organization
should identify computing technology challenges, constraints, and risks associ-
ated with specified computing environment requirements. Representatives of the
computing environment organization are essential to ensuring that the require-
ments specified for the computing environment are achievable.

17.5  �Post-development process implementation
(software requirements definition stage)

1.	 Participate in the SWE-IPT. Senior representatives of the software post-
development process organization should participate in the SWE-IPT to con-
tribute to making constructive software requirements specifications decisions.
Representatives from software post-development process areas bring their
knowledge of the software replication, distribution, training and sustainment
technologies, procedures, and challenges to the SWE-IPT.

2.	 Identify software post-development process implementation challenges, con-
straints, feasibility, and risks. Representatives of the software post-development
process organization should identify challenges, constraints, and risks associ-
ated with the post-development process concepts. Representatives of the soft-
ware post-development process organization are essential to ensuring that the

300 CHAPTER 17  Software Requirements Definition

requirements specified for the software product and sustainment environment do
not constrain the post-development processes.

3.	 Prepare the software post-development process concepts. Representatives of the
software post-development process organization should develop the concept of
operations (CONOPs) documents, which must be prepared to express the ini-
tial scope and requirements for each of the process areas. The CONOPs should
identify any unique tools, equipment, facilities, or materials necessary to sup-
port these processes.

17.6  �Software test and evaluation (software
requirements definition stage)

1.	 Participate in the SWE-IPT. The senior representatives of the software test
and evaluation organization should participate in the SWE-IPT to contribute
to making constructive software requirements specifications decisions. These
representatives bring their knowledge of techniques for replicating stressful
computational loads, measurement of resource utilization, and other challenges
associated with software testing to the SWE-IPT.

2.	 Identify software test and evaluation feasibility, challenges, constraints, and
risks. Lead representatives of software test and evaluation should identify chal-
lenges, constraints, and risks associated with the software test and evaluation
effort. Representatives of software test and evaluation are essential to ensur-
ing that the software requirements, as specified, are testable within allocated
resources and constraints.

3.	 Prepare the software test plan. The software test and evaluation organization
should prepare the software test plan to describe the strategy for conducting
software acceptance testing. This plan should identify the preliminary test strat-
egy and test cases, the elements of the software test environment, and establish
the test schedules based on the software specifications.

4.	 Revise the software quality assurance plan. The software test and evaluation
team should prepare the software quality assurance plan to describe the strategy
for conducting software inspections and audits during software preliminary
architecture definition.

5.	 Conduct software quality assurance inspection and audits. Software quality
inspections should be conducted periodically (during the software requirements
definition stage) to evaluate the software requirements specifications and archi-
tectural artifacts. The following inspections should be conducted:
●	 Inspection of the operational model
●	 Inspection of the functional architecture
●	 Inspection of the physical architecture
●	 Inspection of the product requirements specification(s)
●	 Inspection of the computing environment specification(s)
●	 Inspection of the software interface specification(s)

30117.7  Reviews, milestones, and baselines

●	 Inspection of the software test plan
●	 Inspection of the requirements traceability matrix
●	 Inspection of the post-development process concept documents
●	 Inspection of the nomenclature register

Software quality inspections should be conducted to ensure that organizations
are complying with established policies and procedures. Software audits should be
conducted prior to the SRR to ensure the available software specifications provide
a consistent and traceable framework for evaluating software requirements against
project and technical plans and stakeholder needs and expectations. The following
audits should be conducted:

1.	 Software requirements audit—traces stakeholder needs to the specified require-
ments in the software specifications through the operational model to the
preliminary functional and physical architectures. The source for derived
requirements should be associated with the engineering analysis or trade study
that recognized the implied need. Derived requirements must be included within
the requirements traceability matrix.

2.	 Software test audit—traces software test cases or scenarios to the operational
model data processing transactions and software requirements each scenario
will exercise. The test cases should be properly reflected in the requirements
traceability matrix.

3.	 Corrective action audit—traces each software problem report, change request,
or proposal to its trade-study report and corrective action plan. Ensures that
the corrective action is properly reflected in the operational model, software
requirements specifications, functional and physical architectures, and associ-
ated architectural artifacts affected by the action.

17.7  �Reviews, milestones, and baselines (software
requirements definition stage)

1.	 Conduct the SRR. The software requirements review should be conducted for
the purpose of substantiating the adequacy of the software specification(s)
and post-development process concepts to the stakeholders. The SRR should
focus on the state of the requirements allocation to the software product, and
its configuration items, external interfaces, and elements of the computing
environment. The review should focus on the architectural decisions that were
made during the software requirements definition and any risks that have been
identified. The purpose is not to provide a forum for nonparticipants in the soft-
ware engineering effort to approve or comprehend the software requirements;
rather, the purpose is to confirm that the software requirements are complete and
consistent with stakeholder needs and project objectives. To accomplish this,
it is necessary to demonstrate that the operational problem and solution spaces
have been adequately explored, alternative solutions have been analyzed, and

302 CHAPTER 17  Software Requirements Definition

architectural decisions made with credible technical rationale. A typical agenda
for the software requirements review should address the following topics:
1.	 Software Requirements Definition Stage—Objectives

1.1.	Products of Requirements Analysis
1.1.1.	 Stakeholder Needs and Constraints
1.1.2.	 Operational Model Composition
1.1.3.	 Preliminary Functional Architecture Formation (Behavioral

Model and Hierarchy)
1.1.4.	 Conceptual Physical Architecture
1.1.5.	 Key Trade-off Analysis, Alternatives, Results, Decisions, and

Rationale
1.1.6.	 Software Requirements Specifications Status
1.1.7.	 Computing Environment Specifications Status

1.2.	Post-development Process Concepts
1.2.1.	 Replication Process
1.2.2.	 Distribution Process
1.2.3.	 Training Process
1.2.4.	 Support Process
1.2.5.	 Post-development Processes Development

1.2.5.1.	 Schedule and Milestones
1.2.5.2.	 Resource Requirements

1.3.	Software Engineering Plan, Schedule, and Milestones (Preliminary
Architecture Definition Stage)

2.	 Software Implementation Strategy
2.1.	Software Implementation Challenges, Constraints, and Risks
2.2.	Software Development Environment
2.3.	Software Implementation Schedule and Milestones (Overview)

3.	 Computing Environment Definition
3.1.	Computing Environment Implementation Challenges, Constraints, and

Risks
3.2.	Computing Environment Implementation Schedule and Milestones

(Overview)
4.	 Software Test and Evaluation

4.1.	Software Test and Evaluation Challenges, Constraints, and Risks
4.2.	Software Test Plan (Overview)

4.2.1.	 Software Test Strategy
4.2.2.	 Software Test Environment
4.2.3.	 Software Test Cases
4.2.4.	 Test and evaluation Schedule and Milestones

4.3.	 Software Quality Assurance Plan
4.3.1.	 Software Quality Inspections
4.3.2.	 Software Quality Audits
4.3.3.	 Software Quality Schedule and Milestones

30317.7  Reviews, milestones, and baselines

5.	 Software Control
5.1.	Updated Project Plans and Schedule
5.2.	Updated Specification Tree
5.3.	Updated Work Breakdown Structure
5.4.	Engineering Artifact Repository
5.5.	Change History Repository
5.6.	Technical Risk Repository
5.7.	Software Nomenclature Registry

2.	 Establish the requirements baseline. The SWE-IPT should place the software
requirements specifications under technical configuration control upon success-
ful completion of the software requirements review. These specifications form
the architectural requirements baseline and establish the foundation for develop-
ing the product functional and physical architectures. The functional baseline
is comprised of the software product, interface, and computing environment
specifications. Once the requirements baseline is established it requires techni-
cal CCB approval of a change request or proposal to make any changes to these
specifications.

The operational model should be captured in the software engineering artifact
repository since it was the basis for deriving the software requirements. The pre-
liminary functional and physical architectures should not be controlled at this time.
The functional and physical architectures will continue to evolve during the pre-
liminary architecture definition stage and provide the technical infrastructure for
expanding the software architectural solution.

This page intentionally left blank

305Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00018-5

Software Architecture
Definition 18

CHAPTER

CHAPTER OUTLINE

18.1  Preliminary architecture definition.. 307
18.1.1  Products of preliminary architecture definition...............................307
18.1.2  Software engineering integrated product team

(preliminary architecture definition stage)......................................309
18.1.3  Software implementation (preliminary

architecture definition stage)..311
18.1.4  Computing environment preparation (preliminary

architecture definition stage)..311
18.1.5  Post-development process preparation (preliminary

architecture definition stage)..312
18.1.6  Software test and evaluation

(preliminary architecture definition stage)......................................312
18.1.7  Reviews and milestones (preliminary architecture definition stage).....314

18.2  Detailed architecture definition... 315
18.2.1  Products of detailed architecture definition...................................315
18.2.2  Software engineering integrated product team

(detailed architecture definition stage)..317
18.2.3  Software implementation (detailed architecture definition stage).....318
18.2.4  Computing environment preparation

(architecture detailed definition)...319
18.2.5  Post-development process preparation (detailed architecture

definition stage)..319
18.2.6  Software test and evaluation (detailed architecture

definition stage)..320
18.2.7  Reviews and milestones (detailed architecture definition stage).......321
18.2.8  Establish the allocated baseline...322

The purpose of the software architecture definition stage of development is to estab-
lish the software product functional and physical architectures, as well as initiate the
development of the software post-development processes. The architecture defini-
tion stage is divided into two substages as depicted in Figure 18.1. The first stage,
preliminary architecture definition, is focused on decomposing top-level functions

http://dx.doi.org/10.1016/B978-0-12-407768-3.00018-5

306 CHAPTER 18  Software Architecture Definition

into a complete functional hierarchy. It also derives the preliminary physical archi-
tecture that defines the conceptual components of the structural configuration.
The second stage, detailed architecture definition, finalizes the physical architecture
by establishing the specifications for structural units and components while estab-
lishing the software integration strategy. During the software architecture definition
stage, the computing environment definition should be established to devise a uni-
fied software product architecture.

During the preliminary stage of architectural definition, the top-level functions
are analyzed and decomposed into a complete functional hierarchy of components
and units. There is no set number of levels for this decomposition. However, the
decomposition should continue until the functional solution is well understood,
complete, and noncomplex. When a functional element is recognized to represent
an uncomplicated data processing action, then no further decomposition is neces-
sary. Uncomplicated elements should be labeled functional units, which represent
the foundational piece of the architecture. Functional unit specifications should be
prepared to reflect the functional characteristics established by the behavior model.
The physical architecture definition is instigated by conceiving a conceptual struc-
tural solution. This structural solution represents an arrangement of conceptual
components that coalesce principal data processing functionality that is ultimately
provided by a set of underlying structural elements. This stage of development con-
cludes with the preliminary design review (PDR). The PDR is intended to demon-
strate that the functional decomposition and behavioral models are complete and in
compliance with the software requirements.

During the detailed architecture definition stage, the lowest-level structural
units must be conceived by aligning and grouping functional units around coherent

FIGURE 18.1

The architecture definition stage.

30718.1  Preliminary architecture definition

themes. Structural units must be specified in terms of their behavior, data elements,
algorithms, conditional control mechanisms, interfaces, and fault detection and
recovery procedures. This is accomplished by coalescing functional unit specifica-
tions while resolving conflicting or duplicative functional characteristics. A structural
unit inheritance hierarchy should be developed to formulate how object-oriented
characteristics will be transmitted from parent units to offspring. The software inte-
gration strategy must be established to bridge the design chasm between structural
units and conceptual components. The structural user interface hierarchy must be
established to identify the mechanism involving information displays, navigational
controls, data formatting, and data entry mechanisms. Database queries must be
specified that satisfy identified functional database transaction behaviors. Software
test procedures and the plans for software implementation must be finalized.

The detailed architecture definition stage concludes with the critical design
review (CDR). The CDR is intended to demonstrate that the physical architecture is
complete, verified, and validated. The physical architecture must be verified against
the functional architecture and against the software requirements baseline. The dis-
tilled structural unit specifications will guide the software implementation team in
the design, coding, and testing of each software unit. The arrangement of structural
units and components must be reviewed to ensure that the structural configuration
is not unreasonably complex and will facilitate problem resolution and preplanned
product improvements (P3I).

18.1  Preliminary architecture definition
The preliminary architecture definition effort is focused on establishing the func-
tional architecture and conceptual structural solution. The purpose of this stage is
to fully understand the software challenge as defined by stakeholder needs, soft-
ware specifications, and computer technology capabilities. The functional architec-
ture provides an analytical solution to the software product operational essentials.
The initial software product structural configuration will be established as a con-
ceptual representation of the dominant, topmost structural components. The initial
structural configuration involves the arrangement of, and interconnections among,
abstract components and user interface design mechanisms.

18.1.1  Products of preliminary architecture definition
The following products should be generated during the preliminary architecture
definition stage of the software development project:

1.	 Functional behavior model. The functional behavioral model provides the func-
tional flow, control flow, data flow, timing, error detection and handling procedures,
and resource utilization characteristics of the software solution. The behavior
model is derived from the operational model and decomposes operational activities
into the deliberate behaviors the software product will be fabricated to possess.

308 CHAPTER 18  Software Architecture Definition

  2.	 Functional hierarchy. The functional hierarchy stipulates the layered break-
down of functional complexity to elementary, uncomplicated functions.
Topmost functional components are decomposed into lower-level components
to provide a logical framework for deriving software behaviors. Lower-level
functional components must be further decomposed until functional units are
perceived. Functional units represent elementary functions that can no longer
be decomposed or of which the effective and efficient formulation does not
warrant further exploration or decomposition.

  3.	 Database transaction behavior diagrams. Provides a behavioral representation
of each database transaction the software product must support. These dia-
grams should identify the database tables accessed, the expected responses to
transaction queries, and transaction rollback procedures.

  4.	 User interface functional hierarchy. This hierarchy depicts how common user
interface functional mechanisms have been grouped into functional compo-
nents, subcomponents, and finally to functional units.

  5.	 Conceptual component block diagram. This diagram provides a layout of con-
ceptual components, the interfaces among components, and interfaces with
operators and elements of the computing environment.

  6.	 Software test cases. The software test cases should be identified by tracing
operational threads of behavior in the operational model. Each operational
thread represents a unique test case. Each test case should identify the set of
conditions under which a data processing transaction is exercised and the crite-
ria for determining that the transaction has been satisfied.

  7.	 Updated requirements traceability matrix. The requirements traceability matrix
must be updated to reflect the evolving elements of the functional and physical
architectures and software test cases.

  8.	 Updated nomenclature register. The software architecture dictionary must
be updated to reflect the elements of the functional and physical
architectures.

  9.	 Preliminary software implementation plan. The software implementation plan
should be drafted to establish the level of effort and resources that will be nec-
essary to accomplish the implementation stage of the software development
effort. The implementation plan should provide a basis for refining the related
work packages to reflect the evolving software architecture and establish the
resource allocations among subpackages. In addition, the software implemen-
tation plan should identify the staffing requirements for the software imple-
mentation organization including the types of skills that will be necessary to
properly implement the software architecture.

10.	 Preliminary computing environment implementation plan. The computing
environment implementation plan should be drafted to establish the level of
effort and resources that will be necessary to establish the computing environ-
ment. The computing environment implementation plan will provide the basis
for refining the related work packages to reflect the resource requirements for
the computing environment implementation organization.

30918.1  Preliminary architecture definition

11.	 Revised software test plan. The software test and evaluation team must revise
the software test plan to reflect the effort associated with preparing and con-
ducting software acceptance testing. The software test plan should provide the
basis for refining the work packages to establish the resource requirements for
the software test and evaluation organization.

12.	 Preliminary post-development process implementation plan. The post-devel-
opment implementation team must prepare the preliminary post-development
process implementation plan to reflect the effort associated with implementing
the post-development processes. The post-development process implementa-
tion plan will provide the basis for refining the work packages to establish
the resource requirements for the post-development process implementation
organization.

18.1.2  �Software engineering integrated product team (preliminary
architecture definition stage)

1.	 Refine the operational model. The software engineering integrated product team
(SWE-IPT) should analyze each of the top-level functional components derived
from the operational model to determine how to break down functional com-
plexity. The behavior of complex functional components should be analyzed to
provide more insight into the software functional behaviors that must be formu-
lated to support the operational process. Functional behavior models should be
prepared to facilitate functional analysis of complex functions. Derived func-
tions should be identified that are necessary to enable a functional component to
behave properly and to detect and respond to failure conditions.

2.	 Refine the functional hierarchy. The SWE-IPT should conduct functional analy-
sis to decompose functional components to establish a more detailed functional
hierarchy. Functional components should be decomposed into functional sub-
components until functional units are recognized. Functional decomposition
alternatives should be evaluated and trade studies conducted to determine the
performance, interfaces, and risks associated with each alternative. The pre-
ferred functional solution should be integrated into the functional hierarchy and
reflected in the other artifacts of the functional architecture.

3.	 Synthesize conceptual configuration alternatives. The SWE-IPT should con-
duct software design synthesis to identify top-level conceptual components.
Conceptual configuration alternatives should be identified and evaluated to nar-
row the solution space to one or more practical alternatives.

4.	 Analyze functional alternatives, conflicts, and trade-offs. The SWE-IPT should
evaluate identified functional decomposition, grouping, and allocation alterna-
tives to determine the best solution set. The risks associated with each alter-
native should be identified and assessed to distinguish architectural design
schemes that eliminate, avoid, or reduce risks to an acceptable level. The pre-
ferred solution, in terms of a coherent set of functional behaviors and decompo-
sition, should be selected that provides the best performance, satisfaction of

310 CHAPTER 18  Software Architecture Definition

	 stakeholder needs and expectations, and opportunity to achieve program cost
and schedule objectives. The SWE-IPT should evaluate identified conflicts
between the functional and initial physical architectures to determine potential
courses of corrective action. Viable approaches to resolving architectural con-
flicts should be explored and evaluated against program objectives and stake-
holder needs. The software implementation and testing challenges and risks
associated with each approach must be identified. The alternative approaches
should be prioritized to facilitate architectural decision making.

  5.	 Specify the functional architecture. The SWE-IPT should conduct software
requirements analysis to coherently specify functional component and unit
requirements. The internal software interface or data exchange requirement
must be stipulated for the transmitting and receiving functional element. The
control, error handling, and resource regulation mechanisms must be desig-
nated to preclude ineffective solution.

  6.	 Verify the functional architecture. As the functional architecture matures it
must be verified to ensure that it reflects a solution that satisfies the require-
ments baseline and is achievable within program objectives. When the require-
ments baseline and functional architecture are aligned, the requirements
traceability matrix must be updated to reflect how the software requirements
have been allocated among the elements of the functional architecture. The
requirements traceability matrix should associate the elements of the func-
tional architecture to elements of the requirements baseline and test cases.

  7.	 Update risk mitigation plans. Risk mitigation plans should be prepared for
those risks that could not be eliminated or avoided and still threaten the
achievement of program objectives. Risk assessment reports should capture
the results of each risk assessment, including the probability of occurrence,
and the consequences should the risk be realized. Risk mitigation plans should
identify the course of action being taken to monitor and prevent the risk from
occurring, the criteria that would make the risk unacceptable to proceed as
planned, and the contingency actions that would be executed should the risk
deviation criteria be encountered.

  8.	 Revise technical plans. The tasks identified in the work packages need to be
reexamined and refined to accurately reflect the work remaining to be performed.
The technical plans should be revised and the program work breakdown structure
(WBS), work package, and resource allocations must be adjusted to reflect the
improved understanding of the remaining scope of the development effort.

  9.	 Refine project plans. The program plans for the remaining stages of the soft-
ware development project should be updated to reflect the remaining scope
of the development effort. The program plans must be living documents and
reflect the design decisions that have been made on the scope of work remain-
ing to be performed.

10.	 Update the software nomenclature register. The software nomenclature regis-
ter should be updated and expanded to reflect the elements of the functional
architecture.

31118.1  Preliminary architecture definition

11.	 Prepare for the PDR. The SWE-IPT should prepare for the PDR. The pur-
pose of the PDR is to present the consistent software requirements, functional
architecture, and conceptual structural configuration to program management,
customers, or other stakeholders. The architectural decisions that guided the
formulation of the functional architecture should be identified. Architectural
decisions must be traced to their impact on the WBS and program and tech-
nical plans. The software quality assurance inspection and audits conducted
during the preliminary architecture definition should be reported. The risks
identified during this stage of development and their risk abatement plans
should be discussed.

18.1.3  �Software implementation (preliminary architecture
definition stage)

1.	 Participate in the SWE-IPT. The senior representatives of the software imple-
mentation organization should participate in the SWE-IPT to contribute to
making favorable architectural decisions. Representatives from software imple-
mentation bring their knowledge of the implementation languages, design pat-
terns, and software implementation challenges to the SWE-IPT.

2.	 Identify software implementation challenges, constraints, feasibility, and risks.
Representatives of the software implementation organization should identify
implementation challenges, constraints, and risks associated with their compre-
hension of the functional architecture and its influence on the software imple-
mentation effort.

3.	 Prepare the preliminary software implementation plan. The software implementa-
tion organization should prepare the preliminary software implementation plan
to reflect the insight obtained during the preliminary architecture definition stage.
This plan must identify the software implementation tasks, work packages, and
schedule milestones for accomplishing the software implementation effort. This
plan will not have the requisite clarity necessary to be executable due to the amor-
phous state of the structural configuration. However, it should provide a more
accurate forecast of the anticipated workload than previous versions of the plan.

18.1.4  �Computing environment preparation (preliminary
architecture definition stage)

1.	 Participate in the SWE-IPT. The senior representatives of the computing
environment organization should participate in the SWE-IPT to contribute to
making favorable architectural decisions. Representatives from the computing
environment organization bring their knowledge of the computing hardware,
networking, communications, operating systems, middleware, and other compu-
tational challenges to the SWE-IPT.

2.	 Identify computing environment implementation challenges, constraints, and
risks. Representatives of the computing environment organization should

312 CHAPTER 18  Software Architecture Definition

identify computational challenges, constraints, and risks associated with align-
ing the computing environment implementation workload with the requirements
baseline and functional architecture.

3.	 Prepare the preliminary computing environment implementation plan.
Representatives of the computing environment organization should prepare
the computing environment implementation plan. This plan must identify the
computing environment implementation tasks, work packages, and schedule
milestones for establishing and qualifying the computational environment. This
plan will not have the requisite clarity necessary to be executable due to the
amorphous state of the structural configuration. However, it should provide a
more accurate forecast of the anticipated workload than previous versions of the
plan.

18.1.5  �Post-development process preparation (preliminary
architecture definition stage)

1.	 Participate in the SWE-IPT. The senior representatives of the post-development
process organization should participate in the SWE-IPT to contribute to making
favorable architectural decisions. The representatives from the post-development
process organization bring their knowledge of software replication, distribution,
training, and customer and software support challenges to the SWE-IPT.

2.	 Identify post-development process implementation challenges, constraints, and
risks. Representatives of the post-development process organization should
identify implementation challenges, constraints, and risks associated with align-
ing the post-development processes with the requirement baseline and func-
tional architecture.

3.	 Prepare the preliminary post-development process implementation plan.
Representatives of the post-development process organization should prepare
the post-development process implementation plan. This plan must identify the
post-development implementation tasks, work packages, and schedule mile-
stones for establishing and qualifying the distribution, training, and software
sustainment processes. This plan will not have the requisite clarity necessary
to be executable due to the amorphous state of the structural configuration.
However, it should provide a more accurate forecast of the anticipated workload
than previous versions of the plan.

18.1.6  �Software test and evaluation (preliminary architecture
definition stage)

1.	 Participate in the SWE-IPT. The senior representatives of the software test and
evaluation organization should participate in the SWE-IPT to contribute to mak-
ing favorable software architecture decisions. The representatives from software
test and evaluation bring their knowledge of the testing demands and challenges
to the SWE-IPT.

31318.1  Preliminary architecture definition

2.	 Identify software test and evaluation challenges, constraints, and risks. As the
component architecture is derived via the software engineering process, senior
representatives of the software test and evaluation team should identify imple-
mentation challenges, constraints, feasibility, and risks associated with the
requirements baseline and functional and physical architecture alternatives.

3.	 Prepare software test plan. The software test and evaluation organization must
refine the software test plan. The software test cases should be derived by iden-
tifying test threads within the operation model. A test case describes the initial
test environment state; inputs, actions, or events that occur throughout the test
conduct; and the expected software response, or results of data processing transac-
tions. This plan must identify the test and evaluation tasks, work packages, and
schedule milestones for establishing the software acceptance test environment and
procedures, qualifying the test environment, and performing acceptance testing.
This plan will not have the requisite clarity necessary to be executable due to the
amorphous state of the structural configuration. However, it should provide a more
accurate forecast of the anticipated workload than previous versions of the plan.

4.	 Conduct software quality assurance inspections and audits. Software quality
inspections should be conducted periodically to examine software engineering
artifacts and products to ensure that they are complete, accurate, and conform to
established policies and procedures. Software quality inspections should be con-
ducted to ensure that organizations are complying with established procedures
and are observing approved plans. The following software quality inspections
should be conducted during the preliminary architecture definition effort:
●	 Inspection of the functional hierarchy
●	 Inspection of the functional component specifications
●	 Inspection of the functional unit specifications
●	 Inspection of the conceptual configuration documentation
●	 Inspection of organizational technical plans
●	 Inspection of the software nomenclature register
●	 Inspection of the requirements traceability matrix

Software audits should be conducted prior to the PDR to ensure the software
products and architectural artifacts are complete and have incorporated approved
change proposals and requests. The following audits should be conducted:

1.	 Functional architecture audit. Tracing the functional element requirements from
the originating source (stakeholders’ needs) through the operational model,
requirements baseline, and functional architecture. The source for derived func-
tional elements should be traceable to architectural decisions or the result of
engineering analysis.

2.	 Acceptance test case audit. Tracing each test case to the specification require-
ments it is intended to validate. A test case must be traced from an operational
thread (operational model), to the source of the requirements (stakeholder
needs), to the specified requirement (specification identifier) it is intended
to qualify. A software test may affect one or more of the architectural

314 CHAPTER 18  Software Architecture Definition

specifications (requirements, interface, or functional), and this should be prop-
erly reflected in the requirements traceability matrix.

3.	 Corrective action audit. Tracing each authenticated change request or proposal
to its corrective action disposition. This audit must ensure that the corrective
action was properly accomplished and is reflected in the affected software prod-
uct and architectural artifacts.

18.1.7  �Reviews and milestones (preliminary architecture
definition stage)

The PDR should be conducted for the purpose of describing the functional archi-
tecture and how architectural decisions were settled. The purpose of the PDR is to
substantiate the software architecture as a framework that will enable the software
architecture to evolve over time. The rationale for design decisions should be the
focus of the review and how they affect program plans and the achievement of pro-
gram objectives. The agenda for the architecture preliminary design review should
address the following topics:

1.	 Preliminary Design Review—Overview
1.1.	 Requirements Baseline and Outstanding Change Proposal Status
1.2.	 Functional Architecture Status
1.3.	 Physical Architecture Status (Conceptual Structural Configuration)
1.4.	 Key Trade-off Analyses, Alternatives, Results, Decisions, and Rationale
1.5.	 Requirements Traceability Matrix

2.	 Software Implementation
2.1.	 Preliminary Software Implementation Plan
2.2.	 Preliminary Software Implementation Schedule and Milestones
2.3.	 Software Implementation Challenges, Constraints, Feasibility, and Risks

3.	 Computing Environment
3.1.	 Computing Environment Implementation Plan
3.2.	 Computing Environment Qualification Plan
3.3.	 Computing Environment Schedule and Milestones
3.4.	 Computing Environment Challenges, Constraints, Feasibility, and Risks

4.	 Software Test and Evaluation
4.1.	 Software Test and Evaluation Plan
4.2.	 Software Test Schedule and Milestones
4.3.	 Software Quality Assurance Inspections
4.4.	 Software Quality Assurance Audits
4.5.	� Software Test and Evaluation Challenges, Constraints, Feasibility, and Risks

5.	 Software Post-development Process
5.1.	 Software Post-development Process Plan
5.2.	 Software Post-development Process Schedule and Milestones
5.3.	� Software Post-development Process Challenges, Constraints, Feasibility,

and Risks

31518.2  Detailed architecture definition

18.2  Detailed architecture definition
The detailed architecture definition stage is focused on finalizing the software
architecture and transitioning to software implementation. The physical architecture
is established by bridging the topmost conceptual level with derived physical units
by identifying integrating structural components. The physical architecture should
be configured in a manner that permits modification, extension, and enhancement to
reduce software support costs and facilitate software reuse.

18.2.1  Products of detailed architecture definition
The physical architecture should be anchored on the fabrication of structural units.
Structural unit specifications are established by synthesizing the assimilated func-
tional unit specifications and resolving conflicting and redundant requirements. The
software integration strategy must be derived by synthesizing one or more levels
of structural components and assemblies that integrate structural elements to align
with the topmost conceptual structure. The following products should be generated
during the detailed architecture definition stage:

1.	 Structural unit block diagram. The structural unit block diagram should be
prepared to represent how structural units will interact with one another. Block
diagrams are a method of explaining complex systems in an uncomplicated
manner. They are composed of labeled blocks representing structural units that
are joined by arrows that indicate the direction of data flow for inputs to and
outputs from the blocks.

2.	 Structural unit inheritance hierarchy. The structural unit inheritance hierarchy
should be developed by grouping similar structural units and deriving paternal
unit characteristics. It should display how the offspring structural units inherit
common functionality and data elements and how each offspring adds addi-
tional unique characteristics. This is known as specialization within the object-
oriented domain.

3.	 Software integration hierarchy. The software integration hierarchy should be
developed to provide a depiction of how structural units will be assembled and
integrated into larger components. Structural assemblies should be identified
that involve an integrated component and the test stubs necessary to support
integration testing. This integration hierarchy should depict the sequential levels
of integration necessary to result in a complete, integrated software configura-
tion item. The hierarchy should also depict where in the hierarchy integration
testing will be conducted.

4.	 Physical user interface hierarchy. The physical user interface hierarchy should
be developed by grouping related user interface mechanisms, synthesizing them
as structural units and components, and configuring the physical user interface.

5.	 Database structure block diagram. The database structure block diagram pro-
vides a graphical representation of the database tables, records, fields, and the
relationships that link records within multiple tables together.

316 CHAPTER 18  Software Architecture Definition

  6.	 Database query specification. The database query specification should be
developed to provide general query instructions for prevalent database trans-
actions. The data persistence functions identified during functional analysis
should be the basis for database query specifications. Each data persistence
function involves preservation of data in a repository or database manage-
ment system (DBMS). Structured query language (SQL) instructions provide
a standard set of instructions or commands for adding, deleting, updating,
and sorting information in a DBMS. The database query specification should
establish the set of privileged database queries that provide access to restricted
database information.

  7.	 Structural unit specifications. Each structural unit must be specified to permit it
to be designed with leveraging the selected programming language expressions or
constructs. A software development folder (SDF) should be established for each
structural unit to provide a repository for all subsequent implementation artifacts.
The requirements specification associated with each physical unit should be
retained in the appropriate SDF. Structural unit specifications should express the
coalesced functional requirements, interfaces, and programmatic design charac-
teristics (e.g., budgeted line of code) to which each unit must conform.

  8.	 Updated requirements traceability matrix. The requirements traceability matrix
should be updated to reflect the structural unit linkages to the functional archi-
tecture, as well as the extended reach of software integration strategy.

  9.	 Updated software nomenclature register. The software nomenclature register
should be updated to reflect the physical architecture and ensure that each
structural unit, component, assembly, and data element name and definition is
unique throughout the software architecture.

10.	 Finalize the software implementation plan. The software implementation plan
should be finalized to identify the level of effort and resources necessary to
accomplish the implementation stage of the software development effort. The
implementation plan must refine the work packages to reflect the evolving
structural configuration and software integration strategy.

11.	 Finalize the computing environment implementation plan. The computing envi-
ronment implementation plan should be finalized to identify the level of effort
and resources necessary to establish and qualify the computing environment
that will be utilized during software acceptance testing. The computing environ-
ment implementation plan must refine the work packages to reflect the resource
requirements for the computing environment implementation organization.

12.	 Software test plan. The software test and evaluation organization must expand
the software test plan to establish test scenarios and procedures. The software
test plan must refine work packages to reflect the effort associated with prepar-
ing for and conducting software acceptance testing.

13.	 Post-development process implementation plan. The post-development
implementation organization must expand the post-development process
implementation plan to reflect the effort associated with implementing the
post-development processes. The post-development process implementation

31718.2  Detailed architecture definition

plan must refine work packages to reflect the effort associated with defining,
designing, assembling, integrating, and qualifying the environment supporting
each of the post-development processes.

14.	 Software technical data package (TDP). The technical data package must be
prepared to provide a basis for software implementation and acceptance test-
ing. The software TDP should include, at a minimum, the following architec-
tural artifacts:
●	 Software requirements baseline (software product and interface specifica-

tions and the computing environment specifications)
●	 Structural unit specifications
●	 Structural component specifications
●	 Structural assembly specifications
●	 Software integration strategy.

18.2.2  �Software engineering integrated product team (detailed
architecture definition stage)

1.	 Synthesize structural unit alternatives. The SWE-IPT should conduct software
design synthesis to identify and group common functions and allocate them to
identified structural units. This includes determining the physical unit inherit-
ance and physical unit user interface hierarchies. Structural unit block diagrams
should be develop to identify how the structural units will need to interface.
Alternative structural unit configurations should be identified and evaluated to
narrow the solution space to the preferred physical design solution.

2.	 Develop the software integration hierarchy. The software integration hierarchy
should be developed to depict the software integration strategy. This hierarchy
depicts how structural elements will be assembled, integrated, and tested to
form a single integrated structural configuration item.

3.	 Analyze structural configuration alternatives, conflicts, and trade-offs. The
SWE-IPT should analyze structural design alternatives to identify the preferred
architectural solution. Trade-off studies should be conducted for structural
design alternatives, as necessary. The risks for structural design alternatives
must be identified and assessed to ensure the resulting structural configura-
tion can be implemented within program cost and schedule constraints. The
preferred structural design solution should be selected that achieves a balance
among performance characteristics, reduced physical architecture complexity,
architectural stability, and the satisfaction of stakeholder needs and expecta-
tions. The SWE-IPT should evaluate identified conflicts between the functional
and physical architectures to determine potential courses of corrective action.
Viable approaches to resolving architectural conflict should be explored and
evaluated against program objectives and stakeholder needs. The software
implementation and test challenges and risks associated with each approach
must be identified. The alternative approaches should be prioritized to facilitate
architectural decision making.

318 CHAPTER 18  Software Architecture Definition

4.	 Update risk mitigation plans. Risk assessment records should be prepared
for those physical unit risks that could not be eliminated or avoided and still
threaten the achievement of program objectives. Risk mitigation plans should
be identified for each identified risk. Risk assessment records should capture the
results of the risk assessment, including the probability of occurrence and the
consequences should the risk be realized. Risk mitigation plans should identify
the course of action being taken to monitor and prevent the risk from occurring,
the criteria that would make the risk unacceptable to proceed as planned, and the
contingency plans that would be executed.

5.	 Revise the WBS. Once the physical architecture is complete and the software
implementation plan finalized, the program WBS should be adjusted to reflect
the improved understanding of the scope of the software implementation and
test and evaluation work effort. The software engineering–related work pack-
ages, associated tasks, and resource allocations must be assigned to the tasks
identified in the software implementation plan.

6.	 Refine technical plans. The technical plans must be revisited for the remaining
stages of the software development program to have them reflect the remain-
ing scope of the work effort. The technical plans must be living documents and
reflect the design decisions that are made and their impact on the scope of work
to be performed. The software engineering–related work packages, associated
task descriptions, and resource allocations must be aligned with the tasks iden-
tified in the plan. The resulting software engineering plan should identify the
tasks to be performed throughout the remaining stages of the software develop-
ment effort. The SWE-IPT must synthesize organizational plans and refine the
integrated technical plan and schedule (ITP/ITS).

7.	 Update the software nomenclature register. The software architecture dictionary
should be updated and expanded to reflect the physical architecture. The names of all
physical units and components must be added to the software architecture dictionary.

8.	 Prepare for the CDR. The SWE-IPT must prepare for the architecture CDR. The
purpose of the CDR is to present the consistent requirements baseline and func-
tional and physical architectures to program management, customers, or other
stakeholders. The design decisions that drove the major changes to the program
structure and plans should be identified and traced to the impact on the WBS and
program plans. The software test planning, including quality assurance inspec-
tion and audits conducted during the detailed architecture definition, should be
addressed. The risks identified and their risk abatement plans should be reviewed.

18.2.3  �Software implementation (detailed architecture definition
stage)

1.	 Participate in the SWE-IPT. The senior representatives of the software imple-
mentation team should participate in the SWE-IPT to contribute to making
favorable functional and physical architectural decisions. The representatives
from the software implementation team bring their knowledge of the implemen-
tation languages, design patterns, and challenges to the SWE-IPT.

31918.2  Detailed architecture definition

2.	 Identify software implementation challenges, constraints, feasibility, and risks.
Representatives of the software implementation team should identify software
implementation challenges, constraints, feasibility, and risks associated with
physical architecture alternatives.

3.	 Finalize the software implementation plan. The software implementation plan
should be finalized to reflect the effort necessary to implement the completed
software physical architecture. The software implementation–related work pack-
ages, associated task descriptions, and resource allocations must be aligned
with the tasks identified in the software implementation plan. This includes the
effort to:
●	 Design, code, and test each structural unit.
●	 Integrate and test structural components.
●	 Design, develop, and evaluate prototypes to refine software implementation

concepts.
●	 Assemble, integrate, and test the fully integrated software product configura-

tion items.

18.2.4  �Computing environment preparation (architecture detailed
definition)

1.	 Participate in the SWE-IPT. Senior representatives of the computing environ-
ment organization should participate in the SWE-IPT to contribute to making
favorable physical architectural decisions. Representatives from the computing
environment organization bring their knowledge of the computing hardware,
networking, communications, operating systems, middleware and software
architectures, and challenges to the SWE-IPT.

2.	 Identify computing environment implementation challenges, constraints, feasi-
bility, and risks. Representatives of the computing environment implementation
organization should identify computing environment challenges, constraints,
feasibility, and risks associated with physical architecture alternatives.

3.	 Finalize the computing environment implementation plan. The computing
environment implementation plan should be finalized to reflect the effort neces-
sary to implement the computing environment to support software acceptance
testing. This should include facility preparations, equipment acquisition, instal-
lation and checkout, workstations, software applications, and test tools. The
computing environment implementation-related work packages, associated task
descriptions, and resource allocations must be aligned with the tasks identified
in the plan.

18.2.5  �Post-development process preparation (detailed
architecture definition stage)

1.	 Participate in the SWE-IPT. Senior representatives of the post-development
process implementation organization should participate in the SWE-IPT to con-
tribute to making favorable physical architectural decisions. The representatives

320 CHAPTER 18  Software Architecture Definition

from the post-development process implementation organization bring their
knowledge of the software replication, distribution, training, and support pro-
cess demands and challenges to the SWE-IPT.

2.	 Identify post-development process implementation feasibility, challenges,
constraints, and risks. Representatives of the post-development process
implementation organization should identify post-development process chal-
lenges, constraints, feasibility, and risks associated with physical architecture
alternatives.

3.	 Finalize the post-development process implementation plan. The post-develop-
ment process implementation plan should be finalized to reflect the effort neces-
sary to implement the post-development processes. This should include facility
preparations, equipment acquisition, installation and checkout, workstations,
software applications, and support tools. The post-development process imple-
mentation-related work packages, associated task descriptions, and resource
allocations must be aligned with the tasks identified in the plan.

18.2.6  �Software test and evaluation (detailed architecture
definition stage)

1.	 Participate in the SWE-IPT. Senior representatives of the software test and eval-
uation organization should participate in the SWE-IPT to contribute to making
favorable architectural decisions. Representatives from software test and evalua-
tion bring their knowledge of testing demands and challenges to the SWE-IPT.

2.	 Identify software test and evaluation feasibility, challenges, constraints, and
risks. Representatives of the software test and evaluation organization should
identify software testing challenges, constraints, feasibility, and risks associated
with the physical architecture.

3.	 Finalize the software test plans and procedures. The software test and evalua-
tion plans and procedures should be finalized to reflect the effort necessary to
conduct software acceptance testing. Software test procedures must be estab-
lished for each software test case and scenario identified during the preliminary
architecture definition. Software test procedures should articulate the detailed
steps that need to be followed to perform each test, including test setup and
post-test analysis actions.

4.	 Conduct software quality assurance inspections and audits. Software quality
inspections should be conducted periodically to examine software engineering
artifacts and products to ensure that they are complete, accurate, and conform to
established policies and procedures. Software quality inspections should be con-
ducted to ensure that organizations are complying with established procedures
and are observing approved plans. The following software quality inspections
should be conducted during the preliminary architecture definition effort:
●	 Inspection of the structural configuration
●	 Inspection of the structural unit specifications
●	 Inspection of the structural component specifications

32118.2  Detailed architecture definition

●	 Inspection of the software integration and test strategy
●	 Inspection of the software nomenclature register
●	 Inspection of the requirements traceability matrix

Software audits should be conducted prior to the CDR to ensure the software
products and architectural artifacts are complete and have incorporated approved
change proposals and requests. The following audits should be conducted:

1.	 Structural configuration audit. Tracing structural element requirements to the
functional units it assimilated. Ensuring integration tests do not repeat testing
conducted at lower levels of the configuration unless warranted. Ensures that all
internal software interfaces are adequately addressed throughout the software
integration strategy.

2.	 Software test audit. Tracing each test case and procedure to the software specifi-
cation requirements it is supposed to validate. A software test may affect one or
more of the software specifications (software product, computing environment,
and interface), and this should be properly reflected in the requirements trace-
ability matrix.

3.	 Corrective action audit. Tracing each authenticated change request or proposal
to its corrective action disposition. This audit must ensure that the corrective
action was properly accomplished and is reflected in the affected software prod-
uct and architectural artifacts.

18.2.7  �Reviews and milestones (detailed architecture definition
stage)

The CDR should be conducted for the purpose of describing the software physi-
cal architecture. The purpose of the CDR is to substantiate that the functional and
physical architectures are complete, consistent, and will satisfy the specific software
requirements. A typical agenda for the CDR should address the following topics:

1.	 Critical Design Review—Overview
1.1.	Requirements Baseline and Outstanding Change Proposal Status
1.2.	Functional Architecture Status
1.3.	Physical Architecture Status
1.4.	Key Trade-off Analysis, Results, Decisions, and Rationale
1.5.	Structural Unit Requirements Traceability
1.6.	Software Integration Strategy
1.7.	Technical Data Package Status

2.	 Software Implementation
2.1.	Final Software Implementation Plan
2.2.	Software Implementation Challenges, Constraints, Feasibility, and

Risks
3.	 Computing Environment

3.1.	Computing Environment Implementation Plan
3.2.	Computing Environment Qualification Plan

322 CHAPTER 18  Software Architecture Definition

3.3.	Computing Environment Schedule and Milestones
4.	 Software Test and Evaluation

4.1.	Software Test and Evaluation Overview
4.2.	Software Test Procedure
4.3.	Software Quality Assurance

4.3.1.	 Status of Software Quality Inspections
4.3.2.	 Status of Software Quality Audits
4.3.3.	 Software Quality Schedule and Milestones

5.	 Software Post-development Process
5.1.	Software Post-development Process Implementation Plans
5.2.	Software Post-development Process Qualification Plans
5.3.	Software Post-development Process Schedule and Milestones

18.2.8  Establish the allocated baseline
The allocated baseline should be established to place structural unit, integrating
component, and structural component specifications under technical configuration
control. The allocated baseline establishes the specifications for each physical unit,
their interfaces, and traceability to the software requirements baseline. Physical
unit and component specifications form the basis for the design, coding, and testing
of software units during the initial software implementation activity. The software
integration strategy, integrating component, structural assemblies, and structural
component specifications complete the physical architecture. The physical archi-
tecture should be placed under technical configuration control since it provides the
analytical basis for evaluating proposed changes that may arise during software
implementation.

323Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00019-7

Software Implementation 19
CHAPTER

CHAPTER OUTLINE

19.1  Products of software implementation... 325
19.2  Software engineering tasks (software implementation stage).............................. 327
19.3  Software implementation tasks (software implementation stage)........................ 327
19.4  Computing environment tasks (software implementation stage).......................... 329
19.5  Post-development process tasks (software implementation stage)...................... 329
19.6  Software test and evaluation tasks (software implementation stage)................... 330
19.7  Reviews and milestones (software implementation stage).................................. 332

The software implementation stage involves the transformation of the software
technical data package (TDP) into one or more fabricated, integrated, and tested
software configuration items that are ready for software acceptance testing. The pri-
mary activities of software implementation include the:

●	 Fabrication of software units to satisfy structural unit specifications.
●	 Assembly, integration, and testing of software components into a software con-

figuration item.
●	 Prototyping challenging software components to resolve implementation risks

or establish a fabrication proof of concept.
●	 Dry-run acceptance testing procedures to ensure that the procedures are properly

delineated and that the software product (software configuration items (CIs and
computing environment) is ready for acceptance testing.

Software implementation begins with the effort of software fabrication.
Fabrication is an act of making something. Software fabrication involves program-
matic design, source code editing or programming, and testing of each software
unit. This series of technical tasks represents how software procedures, routines,
modules, objects, or graphical models are produced. Each software unit is presumed
to be suitable for their intended purpose or role in the overall architectural context.
The result of software fabrication should be a documented unit of source code that
has been tested against its structural unit specification. This source code (software
unit) is then available to be assembled, integrated, and compiled with other fabri-
cated software elements to craft larger software components. These integrated soft-
ware components are tested against structural component specifications to ensure

http://dx.doi.org/10.1016/B978-0-12-407768-3.00019-7

324 CHAPTER 19  Software Implementation

their correctness. This assembly, integration, and testing series of events continues
to generate larger, more complex software components. Software integration pro-
gresses until a completely integrated and tested software configuration item is real-
ized and available for acceptance testing. The software implementation stage is
shown in Figure 19.1.

Software implementation includes the dry-run of the software acceptance test-
ing. This dry-run exercise is intended to ensure that the acceptance test procedures
are effective and the software product performs according to software specifica-
tions. A dry-run provides a demonstration of the software product’s readiness for
acceptance testing. Acceptance testing represents a formal demonstration to stake-
holders that the software development effort has achieved its objectives. If the tests
are successful, the software product is deemed to be ready for distribution and post-
development sustainment. The act of declaring the acceptance testing successful is
the first step in transitioning from the software development project to deployment
and post-development operations. Additional projects may be initiated to provide
software post-development process operations and provide preplanned product
improvement through an incremental or spiral approach. Alternatively, the software
development project may simply transition into the post-development stage of the
software life cycle.

Software deficiencies identified within the software implementation stage must
be resolved. Those deficiencies that are determined to be the result of architectural
flaws must be documented in architectural problem reports. The software engineer-
ing integrated product team (SWE-IPT) must be responsible for resolving architec-
tural deficiencies and repairing the architectural artifacts. Other deficiencies may
be discovered that stem from programmatic design or coding mistakes. However,
those software problem reports are the responsibility of the software implemen-
tation organization to resolve. The software implementation team should not be
allowed to deviate from the software TDP. Software architectural deficiencies must
be resolved by the SWE-IPT. Architectural problem reports should be generated by
software implementation personnel to document perceived software deficiencies
that stem from the software TDP.

An acceptance testing dry-run is conducted to ensure that the software product
can successfully pass acceptance testing while running on the specified computing

FIGURE 19.1

Software implementation stage.

32519.1  Products of software implementation

environment. Upon successful completion of dry-run testing, the resolution of any
software problem reports, and regression testing, the software test readiness review
(TRR) should be conducted. The TRR is conducted to demonstrate to program
management and stakeholder representatives that the software development is com-
plete and the software product is ready for acceptance testing.

If the program chooses to bypass dry-run testing, there are risks that extensive
regression testing will be necessary should any defects be uncovered during accept-
ance testing. Conducting dry-run testing ensures the development team that the
software product will successfully pass acceptance testing and no further modifica-
tions to the software will be necessary prior to deployment.

19.1  Products of software implementation
The products identified in this section do not represent the complete set of products
generated during software implementation. The following artifacts identify the soft-
ware implementation artifacts that concern the software engineering effort:

1.	 Software unit programmatic design diagrams. The programmatic design dia-
grams provide a representation of the computational logic for each software
unit. They should address control, data, and procedural flows necessary to trans-
form inputs into desired outputs. Emphasis should be placed on the algorithmic
computation of data items that result in accurate data values, fault handling
mechanisms, and procedural calls or interfaces to other software elements. Each
software unit must be evaluated to ensure that it satisfies its specification that
involves performance and other nonfunctional requirements (e.g., size, resource
utilization).

2.	 Programmatic design descriptions. Programmatic design descriptions provide
a narrative, procedural explanation of how the software unit design achieves it
data processing responsibilities.

3.	 Software unit test scenarios. Unit test scenarios should identify the data sets,
procedures, and expected outcomes for each unit test case. Unit test scenarios
describe how a software unit will be verified to confirm that it satisfies its struc-
tural unit specification. Unit test scenarios should be developed and documented
in the software development folders (SDFs).

4.	 Software unit source code files. Source code files represent the computing lan-
guage-specific data declarations and instructions that constitute a software mod-
ule, routine, procedure, or class. A source code file is intended to be compiled
into an executable binary file that can be run on the target computing system.

5.	 Software unit test results. The results of software unit testing should be docu-
mented and captured in the unit SDFs.

6.	 Software component assembly, integration, and test procedures. The software
integration strategy should be detailed by establishing the procedures necessary
to compile, assemble, and link (integrate) source code files into an executable
file to support software component testing. The software component

326 CHAPTER 19  Software Implementation

	 test scenarios and procedures should be described and captured in a component
SDF.

  7.	 Software integration test results. The results of software integration testing
should be documented and captured in the component SDFs.

  8.	 Dry-run test report. The dry-run test report should summarize the test results,
problems, and defects encountered. Each software problem or defect should be
assigned to the organization responsible for resolving the issue. The associated
set of regression tests that need to be conducted on the repaired software prod-
uct must be identified. This report will be used in determining the readiness of
the software product to commence acceptance testing.

  9.	 Acceptance testing report. The acceptance testing report should summarize the
test results, problems, and defects encountered (there should be no problems
or defects encountered!). Each software problem or defect should be assigned
to the organization responsible for resolving the issue. The associated set of
regression tests that need to be conducted on the repaired software product
must be identified. This report will be used in determining the readiness of the
software product for operational deployment.

10.	 Software build procedures. The software build process should be defined,
which establishes the manner by which the source code files are assembled,
integrated, and verified to produce executable files for distribution. The build
procedures should address the following tasks and automated support to script
calls to compiler and link editors:
●	 Compiling source code into binary code.
●	 Packaging binary code libraries as extractable files.
●	 Verifying build integrity.
●	 Distribution of extractable executable images.
●	 Creating documentation and/or release notes.
●	 Release and patch (binary file fixes) coordination.

11.	 Software problem reports. Software problem reports should be generated for
problems or deficiencies uncovered during software implementation.

12.	 Engineering change requests (ECRs). ECRs should be generated to capture
a desired change to the software architecture. Each ECR should include the
necessary specification and documentation change pages that will be used to
assimilate the change into the architectural artifacts, and documentation con-
sistent with the proposed change, if approved.

13.	 Prepare waivers and deviations (as necessary). Waivers or deviations to a
requirement in one of the baselined software specifications should be
prepared and submitted to the project-level change control board (CCB) for
approval. Deviations do not relieve the program from achieving the speci-
fied requirement, but will permit the initial release of the software product
with an understanding that the problem will be corrected in a future patch or
release. Waivers relieve the program from the necessity to satisfy a specified
requirement.

32719.3  Software implementation tasks

19.2  �Software engineering tasks (software
implementation stage)

1.	 Monitor software implementation progress. The SWE-IPT monitors the soft-
ware implementation effort to ensure that the implementation is being accom-
plished as specified by the physical units. When software engineering proposals
are submitted, the SWE-IPT must execute the software engineering process to
determine the appropriate corrective action. It is acceptable for the SWE-IPT to
reject an ECP and not deviate from the established requirements baseline and
functional and physical architectures.

2.	 Refine the software architecture. The SWE-IPT should modify the software
architecture to resolve engineering change requests that are necessary for the
software implementation effort to be successfully accomplished. The functional
and physical architectures may need to be modified and updated to reflect
changes required to resolve a requested architectural deficiency. The supporting
artifacts, models, and formal documentation should be updated, as necessary, to
reflect the change in the software architecture.

3.	 Evaluate ECRs. The SWE-IPT should evaluate each ECR to determine if the
desired change can be satisfied within project cost and schedule constraints. The
impact of the change on the software architecture must be determined and the
level of effort required to implement the change determined. If the functional or
allocated baselines need to be changed, the SWE-IPT should prepare an engi-
neering change proposal (ECP) to identify the extent of the change, its impact
on the achievement of program objectives and customer satisfaction, and the
resources necessary to implement the change proposal.

19.3  �Software implementation tasks (software
implementation stage)

1.	 Prepare software unit programmatic designs. The software implementation
team leverages the selected programming language constructs to develop flow
charts or other descriptions of the operating principles1 of each unit’s data
processing execution. These design descriptions should utilize the structural
conventions of a programming language, however they must be comprehendible
and verifiable by humans.

2.	 Conduct software unit design reviews. Each software unit must be reviewed
before it is transitioned to the coding activity. Software unit designs must be
reviewed with senior representatives of the software implementation team to
ensure that the software design is consistent with the structural unit specification

1 See http://en.wikipedia.org/wiki/Pseudocode

http://en.wikipedia.org/wiki/Pseudocode

328 CHAPTER 19  Software Implementation

	 and adheres to software design and coding standards. In addition, each unit
design should be evaluated to determine if it provides a noncomplex and well-
documented solution that will facilitate post-development sustainment. These
design walk-throughs or peer reviews can be performed for individuals or
groups of related software units.

  3.	 Prepare software unit source code files. The software implementation team
edits the source code according to the unit programmatic design documenta-
tion. A source-coded editor should be used to facilitate code generation due to
its ability to dynamically check the syntactic validity of instructions; it may
provide interpretive execution and debugging.

  4.	 Prepare software problem reports. Software problem reports should be gen-
erated whenever a software unit test procedure uncovers a defect. Software
problem reports must be evaluated to determine the proper resolution, and
tracked to ensure they are resolved. Software defects that can only be rectified
by making adjustments to the software architecture should be submitted to the
SWE-IPT as an ECR.

  5.	 Prepare software unit test scenarios. The software unit test scenarios and pro-
cedures should be developed and documented in the software development
folder.

  6.	 Code software units. The software implementation team generates the code for
each software unit according to the unit programmatic design documentation.

  7.	 Test software units. The software implementation team tests each software unit
to ensure that it performs as expected, and achieves the software unit speci-
fications. The results should be documented in the software unit test report.
Deficiencies identified during unit testing may be resolved, if possible, by
modifying the programmatic design and fixing the source code appropriately.
Software problem reports must be generated to document identified deficien-
cies that stem from the structural unit specifications.

  8.	 Prepare software unit test report. The results of the software unit testing
should be documented in the software unit test report and captured in the
software unit SDF. The software unit test report should identify every error
encountered during testing, and identify the software problem reports that were
generated to document the deficiencies.

  9.	 Resolve identified deficiencies. As software unit testing identifies deficiencies,
the software unit must be redesigned and its code updated to reflect the correc-
tive action. The software development folder should be updated to preserve test
results and properly reflect the “as-implemented” software unit design. The
modified software unit is retested to ensure that the modifications did resolve
the problem reports and did not introduce any additional problems.

10.	 Place software units under configuration control. Once a software unit has
satisfied its unit test procedures the code should be captured in the software
library and placed under configuration control.

11.	 Prepare software component integration and test procedures. The software
component integration and test procedures should be prepared and captured
in the component SDF. Software component test procedures should not repeat

32919.5  Post-development process tasks

the testing associated with each of the software units. Component test pro-
cedures are intended to ensure that the interfaces among software units and
components are not broken or damaged as a result of integration. In addition,
software components that involve interfaces with external elements should be
tested to validate the interfaces.

12.	 Integrate and test software components. The software implementation organi-
zation should integrate and test each software component to ensure that it per-
forms as expected. Component integration testing should not reconduct software
unit testing but should focus on ensuring that software interfaces work properly
and that no problems were introduced by integrating software elements.

13.	 Support dry-run testing. Representatives of the software implementation
organization should participate in the dry-run of the acceptance test. Confusion
may arise concerning interpretations of test success. Representatives from the
computing environment, test and evaluation, and implementation organizations
must collaborate to isolate the source of each unsuccessful test. A software
problem report should be prepared to identify the cause of each test failure and
to recommend a preferred course of corrective action.

14.	 Support ECR evaluations. The software implementation representatives to the
SWE-IPT should participate in evaluating ECRs and determining the appropri-
ate architectural resolution.

19.4  �Computing environment tasks (software
implementation stage)

1.	 Define and implement the computing environment. The computing environment
should be designed and implemented in a timely manner that supports software
acceptance testing.

2.	 Qualify the computing environment. Computing environment qualification
should be performed to ensure that the computing environment satisfies the
computing environment specification. The performance of the computing envi-
ronment should be measured to establish integrated benchmarks necessary to
verify software product performance specifications.

3.	 Support ECR evaluations. The computing environment representatives to the
SWE-IPT should participate in evaluating ECRs and determining the appropri-
ate architectural resolution.

19.5  �Post-development process tasks (software
implementation stage)

1.	 Define and implement the software replication process. The software replica-
tion process should define the equipment and software applications needed to
produce electronic copies of software executables on the desired distribution
media. The process and procedures for software replication should be identified

330 CHAPTER 19  Software Implementation

and verified to ensure that the replication process is ready to support software
deployment. This should include the packaging of the distribution media, manu-
als, warranty information, etc., so that it may be distributed to customers or
retail/resale outlets, as appropriate.

2.	 Define and implement the software distribution process. The software distribu-
tion process and the equipment and software applications needed to package,
distribute, or deploy the software product should be defined. Software distribu-
tion may involve: (1) establishing an Internet-based distribution approach, (2)
employing a dedicated sales team, or (3) establishing distribution and sales
channels for packaged merchandise. This may include methods for single-item
distribution, mass quantity conveyance to retail or resale outlets, and Internet
file download mechanisms. International distribution should be explored and
compliance with country-unique regulations concerning the distribution of soft-
ware products must be investigated. If the software product is being developed
for a single customer, then distribution involves delivery, setup, and check-out
of the software product.

3.	 Define and implement the software training process. The software training
material and mechanisms must be defined and prepared. Training may be in the
form of Internet-based instruction, software-based tutorials, or classroom hands-
on training. Training materials should be prepared based on the established soft-
ware configuration and authorized engineering change proposals.

4.	 Define and implement the software sustainment processes. The software and cus-
tomer support processes should be defined and the equipment and software appli-
cations needed to provide product and customer support must be identified. The
customer support process may involve phone or online-based help desks or other
mechanisms to provide assistance to customers and to record and track software
problem reports. Software sustainment processes involve the software develop-
ment equipment and applications that enable the resolution of software defects
within source code files, and the issuance of software patches or service packs.
Note: The software sustainment process does not involve the effort to provide
preplanned product improvement or the advancement of software versions in
an iterative or spiral manner. Spiral or incremental efforts involve an intentional
software development effort that warrants an organizational commitment and
project instantiation.

5.	 Support ECR evaluations. The post-development process representatives to the
SWE-IPT should participate in evaluating ECRs and determining the appropri-
ate architectural resolution.

19.6  �Software test and evaluation tasks (software
implementation stage)

1.	 Prepare the software test environment. The software test environment that will
be used to support software acceptance testing must be prepared. Special equip-
ment, test applications, and metric data collection and analysis tools may need

33119.6  Software test and evaluation tasks

to be acquired or developed to provide the load, stress, scalability testing, soft-
ware product performance benchmarking, and regressions testing.

2.	 Finalize the software acceptance test procedures. Software acceptance test pro-
cedures should be finalized during software implementation in a timely manner
that supports dry-run of software product acceptance test procedures.

3.	 Conduct dry-run testing. The software test and evaluation team should execute
the acceptance test procedures on the software product executables. The motiva-
tions for dry-run testing include:
●	 To gain experience with conducting the acceptance test procedures.
●	 To identify and correct any defects with the test procedures.
●	 To ensure that the computing environment is properly configured to support

testing.
●	 To ensure that the software product will satisfactorily pass the acceptance

testing obstacle.
Members of the SWE-IPT should monitor the execution of each test to ensure
that the test procedures were followed and that the results were accurately cap-
tured and recorded.

4.	 Generate software problem reports. When a software test procedure does not gen-
erate the expected results, then a software problem report should be generated to
identify the problem and explain how it deviated from expected results. Software
problem reports that require a modification to the software architecture or TDP
should be identified as an ECR. ECRs must be resolved by the SWE-IPT to identify
the proper change to be implemented to resolve the architectural design problem.

5.	 Revise the software test procedures. The software test procedures should be
revised to correct any errors identified during the dry-run activity. It is possible
for a test failure to occur because the software test procedure was improperly
defined or its expected results were incorrectly postulated.

6.	 Support ECR evaluations. Test and evaluation representatives to the SWE-IPT
should participate in evaluating ECRs and determining the appropriate architec-
tural resolution.

7.	 Conduct software quality assurance inspection and audits. Software quality
inspections should be conducted periodically during the software implementa-
tion phase to assess the compliance with approved policies and procedures. The
following inspections should be conducted:
●	 Inspection of the assimilation of change request and proposal resolutions.
●	 Inspection of software problem report resolutions.
●	 Inspection of the software development folders for software units and

components.
●	 Inspection of software integration and test records.
●	 Inspection of dry-run test records.
Software audits should be conducted prior to TRR to ensure the software documen-
tation provides a consistent, traceable framework for providing post-development
sustainment or incremental/evolutionary development. The software documenta-
tion and artifacts must be audited to ensure that they reflect the “as-tested” software
product configuration. The following audits should be conducted.

332 CHAPTER 19  Software Implementation

a.	 Software development folder audit. The audit evaluates the software unit
detailed design against the physical unit specification to ensure that all
of the allocated requirements have been addressed by the software unit
design. Audits of software development folders must ensure that the soft-
ware unit programmatic design and source code comply with established
software design and coding standards.

b.	 Acceptance test audit. This audit evaluates the traceability of each
test case and procedure to the software specification requirements it is
supposed to validate. A software test may affect more than one of the
requirement specifications and this should be properly reflected in the
requirements traceability matrix.

c.	 Computing environment readiness audit. This audit evaluates the readi-
ness of the computing environment to participate in software dry-run
testing. The computing environment is an important element of the soft-
ware architecture and the software product cannot be tested properly if
the computing environment is not available.

d.	 Corrective action audit. This audit traces each approved software engi-
neering request to an approved architectural corrective action plan.
The corrective action audit must ensure that the corrective action was
properly assimilated into the software architecture and reflected in the
affected documentation within the technical data package. The resulting
software implementation documentation must be inspected to ensure that
the architectural corrective action was properly incorporated.

19.7  �Reviews and milestones (software implementation
stage)

1.	 Software unit design walk-through. Each software unit should undergo a peer
review to ensure that its programmatic design satisfies the unit specification, and
that the design documentation has been prepared according to documentation
standards. Upon successful completion of a software unit design walk-through
the software unit may proceed to the software code and testing effort.

2.	 Unit code walk-through. The software implementation team conducts a code
walk-through for each software unit. The purpose of the code walk-through is
to ensure that the unit programmatic coding is complete. The unit code and test
results should be reviewed to ensure that they properly achieve the specifications,
that the source code documentation correctly reflects the “as-implemented” code,
and that no Trojan horse2 or backdoors3 are present within the code.

2 A Trojan horse is in reference to the story of the Trojan horse from a Greek legend. It is a malicious
program disguised as a normal application. See http://netsecurity.about.com/cs/generalsecurity/g/
def_trojan.htm
3 A backdoor is a secret or undocumented means of getting into a computer system. See http://netse-
curity.about.com/cs/generalsecurity/g/def_backdoor.htm

http://netsecurity.about.com/cs/generalsecurity/g/def_trojan.htm
http://netsecurity.about.com/cs/generalsecurity/g/def_trojan.htm
http://netsecurity.about.com/cs/generalsecurity/g/def_backdoor.htm
http://netsecurity.about.com/cs/generalsecurity/g/def_backdoor.htm

33319.7  Reviews and milestones

3.	 Conduct test readiness review. The test readiness review should be conducted to
determine the readiness of the software product and computing environment to
enter into formal acceptance testing. A typical agenda for the testing readiness
review should address the following topics:
1.	 Test Readiness Review Overview

1.1.  Goals of the Test Readiness Review
1.2.  Review Prerequisites
1.3.  Expected Outcomes

2.  Software Readiness Status
2.1.  Software Engineering Status

2.1.1.  Software Architecture Stability
2.1.2.  Outstanding Engineering Change Requests and Proposals

2.2.  Software Implementation Status
2.2.1.  Acceptance Testing Dry-run Results
2.2.2.  Outstanding Software Problem Reports
2.2.3.  Software Development Folder Audit Status

2.3.  Computing Environment Status
2.3.1.  Computing Environment Configuration
2.3.2.  Computing Environment Readiness Status
2.3.3.  Computing Environment Readiness Audit Results

3.  Acceptance Testing Readiness
3.1.  Test Plan Overview
3.2.  Test Coverage
3.3.  Test Schedule
3.4.  Outstanding Software Problem Reports
3.5.  Regression Testing Approach

4.  Wrap-up
4.1.  Action Items and Assignments
4.2.  Conclusion
4.3.  Final Remarks

This page intentionally left blank

335Software Engineering. DOI:
© 2012 Published by Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-407768-3.00020-3

Software Acceptance
Testing 20

CHAPTER

CHAPTER OUTLINE

20.1  Products of software acceptance testing.. 336
20.2  Software engineering (software acceptance testing stage)................................ 337
20.3  Software implementation organization (software acceptance testing stage)........ 338
20.4  Computing environment implementation organization

(software acceptance testing stage)... 339
20.5  Post-development process organization (software acceptance

testing stage).. 339
20.6  Software test and evaluation (software acceptance testing stage)...................... 339
20.7  Reviews and milestones (software acceptance testing stage)............................ 340
20.8  Establish the software product baseline.. 341

Acceptance testing is the formal testing activity that involves enterprise, customer,
and stakeholder representatives to witness the readiness of the software product to
be deployed. If a contract was the genesis for the software development program,
then this activity represents a significant step in demonstrating that the software
development program has fulfilled its contractual obligations. If the project was
funded by internal enterprise resources, then this activity provides proof that the
program requirements have been satisfied and the product is ready for deployment.
Such products may be distributed internally in support of business processes or they
may be marketed as consumer software packages.

Prior to software deployment, the software configuration items must be subjected
to a final examination to ensure that the software data packages are complete. The
architecture technical data package (TDP) must be audited to ensure that it accurately
reflects the “as-built and tested” software configuration. The functional configuration
audit (FCA) inspects software test results to ensure that the software product satisfies
its specifications, as augmented by change proposals. The physical configuration audit
(PCA) inspects the definitive software deployment data package (DDP) to ensure that
the as-built and tested software configuration is properly reflected in its documenta-
tion set. These configuration audits should be performed to establish the uniformity of
the software product configuration to the architectural and configuration DDPs.

A deployment readiness review (DRR) should be conducted to present the
results of acceptance testing, software configuration audits, and the status of each of

http://dx.doi.org/10.1016/B978-0-12-407768-3.00020-3

336 CHAPTER 20  Software Acceptance Testing

the post-development processes. The DRR is intended to ensure that the processes
for software replication, distribution, training, and sustainment are operationally
prepared to bolster customer and stakeholder demands to software product training
and problem resolution. Figure 20.1 depicts the products of the acceptance testing
stage of software development.

20.1  Products of software acceptance testing
1.	 Acceptance test report. This report summarizes the results of software accept-

ance testing. It should provide the traceability to software problem reports
generated to the software components and units of which the behavior did not
satisfy the test procedure. Acceptance testing confirms that the software product
(software configuration items and computing environment) satisfies the software
specifications.

2.	 Software problem reports. Software problem reports should be generated for
every discrepancy found during acceptance testing. The priority level, risks,
workarounds, and resolution alternatives should be identified so the proper reso-
lution alternative can be identified that will permit software deployment at the
soonest opportunity. If dry-run testing was conducted, then there should not be
any new software problem reports generated during acceptance testing.

3.	 Software deviations and waivers. Deviations and waivers should be generated
for deficiencies in the software product that conflict with the software specifica-
tions. Deviations represent nonconformity of the software product with software
specifications. Deviations represent acknowledgment of these situations, and
request authorization to proceed to deploy the software product in its current

Acceptance Testing Software Operations

Acceptance Test Report
Software Problem Reports

Deployment
Readiness

ReviewSoftware Deviations and Waivers

Software Product Baseline:

Software Replication Operations
Software Distribution Operations
Software Training Operations
Software Sustainment Operations

Customer Support Operations–
– Software Support Operations

Final Architecture Technical Data Package (TDP)
Definitivr Software Deployment Data Package (DDP)

Final Software Source Code Files–
Final Software Build Procedures–
Final Software Executable Files–

Definitive Post-development Process DDP
Software Replication DDP–
Software Distribution DDP–
Software Training DDP–
Software Sustainment DDP–

Customer Support DDP∗
Software Support DDP∗

FIGURE 20.1

Acceptance testing stage.

33720.2  Software engineering

noncompliant state. The deviations provide temporary authorization to deploy
the software product with a commitment to resolve the problems with a future
patch or release. Waivers are for situations where the software does not satisfy
contractual or software requirements, and by waiving the requirement, the soft-
ware product can be deployed, as is, without a commitment to resolve the defi-
ciency in future patches or releases.

4.	 Definitive software DDP. The software DDP should contain the implementation
artifacts that will permit the consideration of future extensions and enhance-
ments to the software architecture. The definitive software DDP should be
accompanied with a list of all authorized changes assimilated into the software
architecture and its design artifacts. There may be a separate software DDP for
each software configuration item that comprise the software product.
●	 Final software executables. The final software executables should be pre-

pared to establish a baseline for software replication and distribution.
●	 Final software source files. The final set of source code files should be

prepared to be incorporated into the software product baseline. A software
bill of material (SBOM) should document each of the source code files that
make up the final software product configuration.

●	 Final build procedures. The final software build procedures should be docu-
mented to explain how the software executable files are generated. These
procedures will be utilized by the software sustainment organization to gen-
erate patches or future releases of the software product.

●	 Final architecture TDP. The updated software architecture artifacts (require-
ments baseline, functional and physical architectures, software nomenclature
register, models, etc.) should be documented to provide a basis for post-
development sustainment and software product and process improvement.

5.	 Definitive post-development process DDPs. The final deployment data packages
for each post-development process should reflect the arrangement and layout of
the facility, equipment, workstations, communications, networking and equip-
ment connectivity, software tools and databases, etc. involved in facilitating
each process. These DDPs provide the detailed design schematics and support
documentation necessary to sustain each of the processes.

20.2  �Software engineering (software acceptance testing
stage)

1.	 Witness software acceptance testing. Representatives of the software engineer-
ing integrated product team (SWE-IPT) should witness the conduct of accept-
ance testing to ensure that the tests are conducted according to the software test
procedures.

2.	 Witness post-development process qualification. Representatives of the SWE-
IPT should witness the conduct of each post-development process qualification
testing to ensure that the tests are conducted according to the test procedures.

338 CHAPTER 20  Software Acceptance Testing

3.	 Reevaluate the software architecture. The SWE-IPT should reevaluate the soft-
ware architecture to understand the impact of software problems and assess
potential solutions. The resolution of deficiencies at this late juncture in the soft-
ware development effort may not be possible. Therefore, the SWE-IPT should
prepare software deviation or waivers, as appropriate, to address the resolution
of unresolved problem reports.

4.	 Support the software configuration audits. Representatives of the SWE-IPT
should participate in the conduct of software FCAs and PCAs.

5.	 Prepare the final architecture technical data package. The SWE-IPT should
prepare the updated architecture artifacts to support the software configuration
audits. The definitive architecture data package should be accompanied with a
list of all authorized changes assimilated into the software architecture and its
artifacts (documentation, drawings, models, etc.).

20.3  �Software implementation organization (software
acceptance testing stage)

1.	 Monitor software acceptance testing. Representatives of the software
implementation organization should witness the conduct of acceptance testing
to provide insight into software behaviors and responses to test scenarios and
conditions.

2.	 Evaluate software problem reports. The software implementation organization
must determine the corrective action to be taken to resolve problems that arise
during acceptance testing. Software problem reports generated as a result of
acceptance testing should be evaluated to determine if they stem from software
implementation defects. If necessary, a problem may be elevated to the SWE-
IPT to be resolved by modifying the software architecture or pursuing a devia-
tion or waiver.

3.	 Deliver the final software executables. The final software executables should be
generated and delivered to the project configuration management organization
to support the software replication process and software configuration audits.

4.	 Deliver the final software source files. The final set of source code files should
be prepared to provide a basis for software problem isolation and resolution.
The source code files also provide a basis for implementing future extensions
and enhancement to the software product baseline.

5.	 Deliver the software build procedures. The final software build procedures should
be prepared and delivered to the project configuration management organization
to facilitate the software replication process. The software build procedures will
be utilized by the software replication team to generate distribution media and
accommodate patching and releasing future versions of the software product.

6.	 Support the software configuration audits. Representatives of the software
implementation organization should participate in the conduct of software FCAs
and PCAs.

33920.6  Software test and evaluation

20.4  �Computing environment implementation
organization (software acceptance testing stage)

1.	 Support the software acceptance testing. Representatives of the computing envi-
ronment organization should participate in the conduct of acceptance testing
to provide insight into the computing environment implementation behaviors.
Confusion may arise among development team members concerning interpreta-
tion of requirements or behavior specifications during testing. The computing
environment is an element of the software product and is qualified as a result of
software acceptance testing.

2.	 Deliver the computing environment DDP. The final computing environment
DDP should be prepared to support the software configuration audits. The final
computing environment DDP should contain a detailed specification of comput-
ing environment physical characteristics and performance benchmarks.

3.	 Support the software configuration audits. Representatives of the computing
environment organization should participate in the conduct of the software
FCAs and PCAs.

20.5  �Post-development process organization (software
acceptance testing stage)

1.	 Finalize data processing workflow procedures. The post-development process
organization should finalize the data processing workflow procedures for con-
ducting software deployment or sustainment tasks. The workflow procedures
should establish guidelines for how to perform typical tasks and contend with
atypical situations.

2.	 Qualify the post-development processes. The post-development process organi-
zation should prepare test procedures for the software replication, distribution,
training, and support processes. Each post-development process should be quali-
fied to ensure that it is ready to conduct software sustainment procedures.

3.	 Finalize the post-development process DDPs. The final deployment data packages
for each post-development process should be prepared to provide the detailed
design schematics and documentation necessary to sustain each of the processes.

20.6  �Software test and evaluation (software acceptance
testing stage)

1.	 Execute the acceptance test procedures. The software test and evaluation
organization should execute acceptance test procedures to qualify the software
configuration and computing environment. Any test failures must be analyzed
to identify the source of the failure. Members of the software quality assurance

340 CHAPTER 20  Software Acceptance Testing

team should monitor the execution of each test to ensure that the test procedures
were followed and that the results were properly captured or recorded.

2.	 Generate software problem reports. When a software test procedure does not
generate the expected results, then a software problem report should be gener-
ated to identify the problem and how it deviated from the expected results.
Software problem reports should document each problem encountered in a
manner that enables reconstructing the test results. Each problem report must be
assigned to the appropriate software development organization for resolution.

3.	 Publish the acceptance test report. The software test and evaluation organiza-
tion should prepare the acceptance test report to document the status of soft-
ware acceptance testing. This report should identify any deficiency identified
and establish the regression testing necessary to properly demonstrate that the
repaired software configuration or computing environment characteristic ade-
quately resolves the deficiency.

20.7  �Reviews and milestones (software acceptance
testing stage)

1.	 Functional configuration audit. The software engineering integrated product
team leads the audit of the software configuration to ensure that requirements
have been properly implemented, tested, and satisfied. Each requirement in the
software specifications should be traced to the test results that confirmed the
suitability of the software implementation. All authorized engineering change
proposals (ECPs) and software problem reports should be evaluated to ensure
that they have been resolved and assimilated into the software DDP.

2.	 Physical configuration audit. The software engineering integrated product team
leads the audit of the software configuration to ensure that requirements have
been properly implemented, tested, and satisfied. The audit should ensure that
all authorized ECPs and software problem reports have been resolved.

3.	 Deployment readiness review. The deployment readiness review should be con-
ducted to review the results of acceptance testing and configuration audits. The
status of each of the post-development process qualifications must be reviewed
to ensure their readiness to support software deployment. Once the deployment
readiness review has been successfully completed, the software product is ready
to transition to the software deployment stage of its life cycle. The software
development project should be considered concluded unless an iterative or spiral
development approach is being employed. A typical agenda for the deployment
readiness review should address the following topics:
1.	 Introduction

1.1.	 Agenda
1.1.1.	 Goals of the Deployment Readiness Review
1.1.2.	 Review Prerequisites
1.1.3.	 Expected Outcomes

34120.8  Establish the software product baseline

1.2.	 Project Overview (Optional)
1.2.1.	 Project Closure Criteria
1.2.2.	 Transition to Software Operations

2.	 Software Development Status
2.1.	 Software Engineering Status

2.1.1.	 Final Architecture TDP Status
2.1.2.	 Outstanding Engineering Change Proposals
2.1.3.	 Outstanding Waivers and Deviations

2.2.	 Software Implementation Readiness
2.2.1.	 Software Implementation Readiness Status
2.2.2.	 Software DDP Status
2.2.3.	 Outstanding Software Problem Reports

2.3.	 Computing Environment Readiness
2.3.1.	 Computing Environment Readiness Status
2.3.2.	 Computing Environment DDP Status
2.3.3.	 Outstanding Software Problem Reports

2.4.	 Test and Evaluation Status
2.4.1.	 Acceptance Test Results
2.4.2.	 Functional Configuration Audit Status
2.4.3.	 Physical Configuration Audit Status

3.	 Post-development Process Readiness
3.1.	 Software Replication Process Readiness
3.2.	 Software Distribution Process Readiness
3.3.	 Software Training Process Readiness
3.4.	 Software Sustainment Process Readiness

4.	 Wrap-up
4.1.	 Action Items and Assignments
4.2.	 Conclusion
4.3.	 Final Remarks

20.8  Establish the software product baseline
The software product baseline (SPB) should be established at the conclusion of the
DRR. The SPB combines the final architecture TDP and software DDP into a com-
plete baseline for the initial release of the software product. This product baseline
should be provided to the software sustainment organization as a basis for software
problem resolution and deriving engineering solutions for software product exten-
sions and enhancements. If an incremental or evolutionary development concept is
utilized, then the software product baseline should be provided to the next program
organization taking responsibility for software product enhancements.

This page intentionally left blank

343

Index

A
Acceptance testing, 39–41

computing environment implementation
organization, 339

deployment qualification review, 40
deployment readiness review, 41
functional configuration audit, 40
overview, 335
physical configuration audit, 40
post-development process organization, 339
products, 336–337
reviews and milestones, 340–341

deployment readiness review, 340–341
functional configuration audit, 340
physical configuration audit, 340

software engineering, 337–338
software implementation organization, 338–339
sustainment qualification review, 41
test and evaluation organization, 339–340

problem reports, 340
test procedures, 339–340
test reports, 340

training qualification review, 41
Agile Manifesto, 104–108
AND, 192
Architectural assessment, 186, 200

architectural complexity, 200
optimization opportunities, 200
requirements fulfillment, 200
software performance, 200

Architectural complexity, 200
Architectural consequences, 282
Architectural elements, configuration

administration, 277–278
Architectural permanence, 232, 242–243
Architectural simplicity, 232, 243
Architectural status, configuration administration,

278
Architecture. See Software architecture
Artifacts, software architecture, 53, 53f
Auditing architectural change progress, 284

B
Behavioral analysis, 186, 189–198

elements to be addressed, 189–190
identify control behaviors, 192–193

identify data flows, 191–192
identify data persistence and retention functions,

197–198
identify data processing procedures, 193–194
identify data retention capacity requirements, 197
identify data security procedures, 197
identify failure conditions, 194–196
identify functional scenarios, 190
identify functional sequences, 190
identify resource prerequisites, 194
identify systems monitoring procedures, 196–197
physical architecture, 216–217

Budgets
performance, 199
resource, 199–200

C
CBA. See Cost-benefit analysis (CBA)
CDR. See Critical design review (CDR)
Change assimilation, 283–284

appraising project situation, 284
auditing architectural change progress, 284
change notification package, 283–284

Change control, 20–22
Change evaluation, 281–283

architectural consequences, 282
technical merits, 281–282
technical plan consequences, 283
technical work package consequences, 282–283

Change evaluation packages, 279–280
Change history repository, 285
Change notification package, 283–284
Change proposal, 22
Change request, 22
Change request or proposal, 279
Code, 272–273
Complexity analysis, 185–189
Complexity control mechanisms, 63–74

documentation tree, 65
measures, 70
product breakdown structure (PBS), 64–65
requirements traceability guidelines, 67–68
software product baselines, 65–67
specification tree, 65
trade-off analysis, 68–70
work breakdown structure (WBS), 63–64

Note: Page numbers followed by “f” and “t” refer to figures and tables, respectively.

344 Index

Computing environment, software architecture, 49
Configuration administration, 277–279

architectural elements, 277–278
architectural status, 278

Configuration management, 20–22
Content mapping, 234
Control behaviors, 192–193

AND, 192
ITERATE, 193
LOOP, 193
LOOP EXIT, 193
OR, 193

Control practice
change assimilation, 283–284

appraising project situation, 284
auditing architectural change progress, 284
change notification package, 283–284

change evaluation, 281–283
architectural consequences, 282
technical merits, 281–282
technical plan consequences, 283
technical work package consequences,

282–283
configuration administration, 277–279

architectural elements, 277–278
architectural status, 278

overview, 275
process engineering change packages, 279–281

change evaluation packages, 279–280
change request or proposal, 279

repository control, 284–285
change history repository, 285
engineering artifact repository, 285
technical risk repository, 285

tasks, 275–276, 276f
Cost

complete software reuirement, 130–131
post-development processes, 131
testing product, 131

Cost-benefit analysis (CBA), 22
Critical architecture definition stage, 37–38

critical design review (CDR), 38
deployment design review, 37–38
detailed architecture review (DAR), 37
sustainment design review, 38
training design review, 38

Critical design review (CDR), 38, 230

D
DAR. See Detailed architecture review (DAR)
Data flows, 191–192
Data items, 177

Data persistence and retention functions, 197–198
Data persistence needs, 151
Data processing conditional logic, 150–151
Data processing procedures, 193–194
Data retention capacity requirements, 197
Data security needs, 151–152
Data security procedures, 197
Data storage transactions, 152
Data store, 179
Deployment data package (DDP), 335
Deployment design review, 37–38
Deployment qualification review, 40
Deployment readiness review (DRR), 41, 335–336,

340–341
Deployment strategy review, 36
Design

defined, 11–12
impediments to. See Software development

Design challenges, functional architecture, 175–176
Design chasm, 236
Design conceptualization, 228, 230–235

abstract structural components, 233
abstract user interface mechanisms, 233–235
architectural design guidelines, 230–233

Design correlation, 228, 238–244
architectural alternatives, 240–241
architectural integrity, 242–243
implementation challenges, 241–242
performance benchmarks, 238–239
structural design deficiencies, 239–240
sustainment challenges, 242

Design guidelines, physical architecture, 211–214
Design manifestation, 228–229, 244

engineering assemblages, 244
structural configuration elements, 244
structural design configuration, 244

Design resolution, 228, 235–238
fundamental structural elements, 235–236
integrating components, 236
software reuse opportunities, 236–238

Design synthesis
design conceptualization, 228, 230–235

abstract structural components, 233
abstract user interface mechanisms, 233–235
architectural design guidelines, 230–233

design correlation, 228, 238–244
architectural alternatives, 240–241
architectural integrity, 242–243
implementation challenges, 241–242
performance benchmarks, 238–239
structural design deficiencies, 239–240
sustainment challenges, 242

design manifestation, 228–229, 244

345Index

engineering assemblages, 244
structural configuration elements, 244
structural design configuration, 244

design resolution, 228, 235–238
fundamental structural elements, 235–236
integrating components, 236
software reuse opportunities, 236–238

overview, 227, 230
technical data package (TDP), 229, 244–245

Detailed architecture review (DAR), 37
Detailed software architecture, 306–307, 315–322

allocated baseline, 322
computing environment implementation, 319
post-development process implementation,

319–320
products, 315–317
reviews and milestones, 321–322
software engineering, 317–318
software implementation, 318–319
testing and evaluation, 320–321

Development costs versus timeliness (Stakeholder
Needs), 48

Documentation tree, 17
complexity control mechanisms, 65

Documenting
decisions, trade study, 261
functional architecture, 181–184

behavior model, 182–183
functional hierarchy, 181–182
functional timeline, 183
requirements allocation sheet (RAS), 184
resource utilization profile, 183–184
specifications, 184

verification and validation (V&V), 273

E
Empowerment, 83, 88–89
Engineering artifact repository, 285
Evolutionary prototyping, 223
External interface, functional architecture, 178
Extreme prototyping, 223

F
Fabrication, assembly, integration, and testing

(FAIT), 102–103
Failure conditions,. behavioral analysis, 194–196
Failure modes and effects analysis (FMEA),

195–196
FAIT. See Fabrication, assembly, integration, and

testing (FAIT)
FMEA. See Failure modes and effects analysis

(FMEA)

Functional analysis and allocation
architectural assessment, 186, 200

architectural complexity, 200
optimization opportunities, 200
requirements fulfillment, 200
software performance, 200

behavioral analysis, 186, 189–198
elements to be addressed, 189–190
identify control behaviors, 192–193
identify data flows, 191–192
identify data persistence and retention

functions, 197–198
identify data processing procedures, 193–194
identify data retention capacity requirements,

197
identify data security procedures, 197
identify failure conditions, 194–196
identify functional scenarios, 190
identify functional sequences, 190
identify resource prerequisites, 194
identify systems monitoring procedures,

196–197
complexity analysis, 185–189
functional architecture, 200–201, 201t
overview, 185–186, 187f
performance allocation, 186, 198–200

performance budgets, 199
resource budgets, 199–200

Functional architecture, 43, 50–51, 61–63, 173
conceiving, 179–181
control structures, 178
data items, 177
data store, 179
design challenges, 175–176
documenting, 181–184

behavior model, 182–183
functional hierarchy, 181–182
functional timeline, 183
requirements allocation sheet (RAS), 184
resource utilization profile, 183–184
specifications, 184

external interface, 178
functional analysis and allocation, 200–201,

201t
functional component, 176–177
functional interface, 177
functional units, 177
motivation for, 174–176
objective, 176
ontology, 176–179
resource, 178–179
role, 174, 174f

Functional assimilation (physical architecture), 51

346 Index

Functional behavior verification (requirements
baseline), 50

Functional behaviors, product analysis tasks,
148–150

Functional component, functional architecture,
176–177

Functional configuration audit, 40, 335, 340
Functional interface, 177
Functional scenarios, behavioral analysis, 190
Functional sequences, behavioral analysis, 190
Functional specification integrity (requirements

baseline), 50
Functional units, functional architecture, 177

G
Goto(s), 272

H
Hardware, defined, 272–273

I
Illustrating, 234
Integrated master plan (IMP), 17–18, 55–56, 75, 77
Integrated master schedule (IMS), 17–18, 55–56,

75, 77
Integrated product and process development

(IPPD), 12–13
application, 82–89
concurrent development of products and

processes, 82, 84–85
customer focus, 82, 84
empowerment, 83, 88–89
engineering and development, 89–91
event-driven scheduling, 83, 88
life-cycle planning, 82, 86
maximize flexibility for optimization and use of

contractor unique approaches, 82, 87–88
multidisciplinary teamwork, 83, 88
overview, 79, 81–82
proactive identification and risk management,

83, 89
robust design and improved process capability,

82, 88
seamless management tools, 83, 89

Integrated product teams (IPT), 13–15, 60
computing environment, 14
description, 60
post-development process, 14
project control, 60
software engineering, 13, 60
software implementation, 14

software testing and evaluation, 14
Integration readiness review, 39
Integration strategy, 74–75

physical architecture, 209–211
IPPD. See Integrated product and process

development (IPPD)
ITERATE, 193

L
LOOP, 193
LOOP EXIT, 193

M
Mean time between failure (MTBF), 195
Measured product performance (software

implementation), 51
Modeling, 234
Modeling and simulation, 24–27

physical architecture, 215–216
MTBF. See Mean time between failure (MTBF)

N
Needs and expectations. See Stakeholders’ needs

and expectations
Nomenclature registry, 74

O
Operational analysis tasks, 144–147

computing environment characteristics, 146–147
external interfaces, 147
identifying concepts, 145
operational scenarios, 145–146

Operational durability, 232–233, 243
Optimization opportunities, 200
OR, 193
Organizational work packages, 133

P
PAR. See Preliminary architecture review (PAR)
PBS. See Product breakdown structure (PBS)
PDSS process test effort (post-development

processes), 50
Performance allocation

functional analysis and allocation, 186, 198–200
performance budgets, 199
resource budgets, 199–200

requirement management, 169–170
Performance allocation confirmation (requirements

baseline), 50
Performance budgets, 199

347Index

Performance evaluations, physical architecture,
217–222

Personal identification number (PIN), 193
Physical architecture, 44, 51, 203, 205

structural design considerations, 211–225
behavioral analysis, 216–217
design guidelines, 211–214
modeling and simulation, 215–216
performance evaluations, 217–222
prototyping, 222–225
trade-off analysis, 217

structural design solution, 205–207
integration strategy, 209–211
structural unit specifications, 209
structural units, 207–209
technical data package, 211

verification and validation (V&V) practice, 272–273
integrated software configuration, 272–273
structural configuration, 272

Physical configuration audit, 40, 335, 340
PIN. See Personal identification number (PIN)
Plan, 11
Post-development processes (requirements

baseline), 47–48
Preliminary architecture definition stage, 36–37

deployment strategy review, 36
preliminary architecture review (PAR), 36
preliminary design review, 37
sustainment strategy review, 37
training strategy review, 36

Preliminary architecture review (PAR), 36
Preliminary design review, 37
Preliminary stage software architecture, 306–315

computing environment organization, 311–312
implementation organization, 311
post-development process organization, 312
products, 307–309
reviews and milestones, 314–315
SWE-IPT, 309–311
testing and evaluation organization, 312–314

Process engineering change packages, 279–281
change evaluation packages, 279–280
change request or proposal, 279

Product analysis tasks, 147–152
data persistence needs, 151
data processing conditional logic, 150–151
data security needs, 151–152
data storage transactions, 152
functional behaviors, 148–150
measures of performance, 152
modes of operation, 148
resource utilization needs, 150

Product architecture, 53
Product breakdown structure (PBS), 64–65
Product interface requirements (requirements

baseline), 47
Product operational characteristics (requirements

baseline), 47
Product performance characteristics (requirements

baseline), 47
Product physical characteristics (requirements

baseline), 47
Product qualification requirements (requirements

baseline), 47
Product requirements review (PRR), 35
Product testing readiness review, 39
Product testing stage, 39–40

acceptance testing readiness review, 39–40
testing readiness review, 40

Programmer productivity, 242
Programming, 99, 100t–101t, 101
Programming language technical capabilities,

242
Project analysis tasks, 140–144

goals and objectives, 141–142
prioritizing needs, 144
stakeholders' needs and expectations, 142–144
success criteria, 142

Project and technical planning, 75–77
project plans, 77
technical organization plans, 75–77

Project budget, 55–56
Prototyping, 24–25, 27, 222–225

comparison of strategies, 26t
considerations, 224–225
disadvantages, 223–224
evolutionary, 223
extreme, 223
incremental, 223
physical architecture, 222–225
rapid, 223

Q
QFD. See Quality function deployment (QFD)
Quality function deployment (QFD), 23–24

R
RAD. See Rapid Application Development

(RAD)
Rapid Application Development (RAD), 104
Rapid prototyping, 223
Registry, 74
Regression testing (requirements baseline), 50

348 Index

Repository control, 284–285
change history repository, 285
engineering artifact repository, 285
technical risk repository, 285

Requirement analysis
operational analysis tasks, 144–147

computing environment characteristics, 146–147
external interfaces, 147
identifying concepts, 145
operational scenarios, 145–146

overview, 140
product analysis tasks, 147–152

data persistence needs, 151
data processing conditional logic, 150–151
data security needs, 151–152
data storage transactions, 152
functional behaviors, 148–150
measures of performance, 152
modes of operation, 148
resource utilization needs, 150

project analysis tasks, 140–144
goals and objectives, 141–142
prioritizing needs, 144
stakeholders' needs and expectations, 142–144
success criteria, 142

project assessment tasks
assess proposed changes, 156–157
project feasibility, 157
requirements sensitivity, 155
software test strategy, 155–156

requirements baseline, 157–158
sustainment analysis tasks, 152–155

architectural guidelines and principles, 154–155
post-development process characteristics,

153–154
post-development process operational

concepts, 152–153
post-development process operational

scenarios, 153
Requirement management

change, 160–166
impact analysis, 162–164
project milestones, 164–165
time, 160–162

change control, 171–172
configuration audits, 172
decomposition and allocation, 168–170

component synthesis, 170
functional analysis, 169
performance allocation, 169–170
structural unit synthesis, 170

overview, 159–160
requirements traceability, 170–172

specifying requirements, 166–168
Requirements

analysis and specification, 127–132
balancing and deconflicting needs, 129
cost

complete software reuirement, 130–131
post-development processes, 131
testing product, 131

experienced software personnel, 132
maintaining scope of project, 129–132
organizational work packages, 133
overview, 121, 124
project planning, 134
resource identification, estimation, and

allocation, 133
stakeholder needs and expectations, 124–127,

135–137
task definition and scheduling, 132–133
technical planning, 133–134
timeline and task dependencies, 131–132

Requirements baseline, 48–49, 157–158
Requirements definition stage, 35–36

product requirements review (PRR), 35
software requirements review (SRR), 35–36

Requirements fulfillment, 200
Requirements traceability, 170–172

guidelines, 67–68
Resource budgets, 199–200
Resource prerequisites, behavioral analysis, 194
Resource utilization and conservation (software

product architecture), 49
Resource utilization needs, 150
Risk management, 24

S
SBS. See Software breakdown structure (SBS)
Scope of post-development processes

(post-development processes), 48
Scope of testing and evaluation effort (testing and

evaluation), 48
Simulation, 24–27

physical architecture, 215–216
Software analysis

assessing project repercussions, 258–259
developmental implications, 258
execution strategies, 259
project implications, 258–259

conducting, 255–258
overview, 247–250, 249f
trade study, 250–251

architectural alternatives, 259–260
candidate alternatives, 250–251

349Index

documenting decisions, 261
evaluation, 259–261
execution strategy, 261
functional alternatives, 256–257
preferred course of action, 260–261
requirements alternatives, 256
scope, 250
structural alternatives, 257–258
success criteria, 251

trade-study environment, 251–255
data collection and analysis mechanisms,

253–255
experimental mechanisms, 252–253
procedures, 255

Software architecture, 11–12
artifacts, 53, 53f
computing environment, 49
design decisions, 56–57
elements applied to, 11–12
functional architecture. See Functional architecture
physical architecture, 44, 51
post-development operational architecture, 62
post-development process architecture, 63

distribution process architecture, 63
sustainment process architecture, 63
training process architecture, 63

product architecture, 53–54, 62
product operational architecture, 62
project environment, 61–63
relationships and dependencies, 44–46
requirements baseline, 61–63
software requirements baseline, 48–49
stakeholder needs relationships and

dependencies, 46–48
subarchitectural elements, 52
SWE-IPT, 44–45
testing and evaluation, 49–50
verification and validation (V&V) practice, 271–272

functional architecture, 271
physical architecture, 271–272
requirements baseline, 271
software implementation, 272

Software architecture definition
detailed, 306–307, 315–322

allocated baseline, 322
computing environment implementation, 319
post-development process implementation,

319–320
products, 315–317
reviews and milestones, 321–322
software engineering, 317–318
software implementation, 318–319
testing and evaluation, 320–321

preliminary stage, 306–315
computing environment organization, 311–312
implementation organization, 311
post-development process organization, 312
products, 307–309
reviews and milestones, 314–315
SWE-IPT, 309–311
testing and evaluation organization, 312–314

purpose, 305–306
Software breakdown structure (SBS), 15–17, 31–34
Software component integration and testing stage, 39

integration readiness review, 39
product testing readiness review, 39

Software development
architecture-driven, 108–111
software as raw material, 95–98
technological evolution, 98–108

Agile Manifesto, 104–108
methods and standards, 101–105, 102f
programming, 99, 100t–101t, 101

Software development process, 34–41
acceptance testing stage, 40–41

deployment qualification review, 40
deployment readiness review, 41
functional configuration audit, 40
physical configuration audit, 40
sustainment qualification review, 41
training qualification review, 41

critical architecture definition stage, 37–38
critical design review (CDR), 38
deployment design review, 37–38
detailed architecture review (DAR), 37
sustainment design review, 38
training design review, 38

preliminary architecture definition stage, 36–37
deployment strategy review, 36
preliminary architecture review (PAR), 36
preliminary design review, 37
sustainment strategy review, 37
training strategy review, 36

product testing stage, 39–40
acceptance testing readiness review, 39–40
testing readiness review, 40

requirements definition stage, 35–36
product requirements review (PRR), 35
software requirements review (SRR), 35–36

software component integration and testing stage,
39

integration readiness review, 39
product testing readiness review, 39

software unit code and testing stage, 38–39
unit design review (peer evaluation), 38
unit qualification review (peer evaluation), 39

350 Index

Software engineering integrated product team
(SWE-IPT), 12

preliminary stage software architecture, 309–311
software architecture, 44–45

Software implementation
computing environment tasks, 329
dry-run acceptance testing, 323–325
fabrication, 323–324
overview, 323, 325
post-development process tasks, 329–330
products, 325–327
reviews and milestones, 332–333
software engineering tasks, 327
tasks, 327–329
testing and evaluation tasks, 330–332

Software integration strategy. See Integration
strategy

Software product baseline (SPB), 341
Software product baselines, 65–67
Software product requirement appropriateness

(functional architecture), 48
Software requirements baseline, 48–49
Software requirements definition

analyze product alternatives, conflicts, and
trade-offs, 296–297

computing environment implementation, 299
computing environment requirements

specifications, 293–294
initial software behavioral model, 293, 295
operational model, 291–293, 295
post-development process implementation,

299–300
product specification tree, 297–298
products, 292–295
project and technical plans, 298
purpose, 291
reviews, milestones, and baselines, 301–303
risk mitigation plans, 297
software engineering, 295–298
software implementation, 298–299
software interface requirements specifications, 294
software nomenclature register, 298
software post-development process concepts, 297

documents, 294
software requirements allocations, 297
software requirements review (SRR), 298
software requirements specifications (SRS), 293
software requirements traceability matrix, 294
software testing and evaluation, 294, 300–301

corrective action audit, 301
feasibility, challenges, constraints, and risks,

300

quality assurance inspection and audits,
300–301

quality assurance plan, 300
software requirements audit, 301
test audit, 301
test plan, 300

synthesize conceptual design alternatives,
295–296

work breakdown structure, 297
Software requirements review (SRR), 35–36
Software requirements specifications, 10, 293
Software unit code and testing stage, 38–39

unit design review (peer evaluation), 38
unit qualification review (peer evaluation), 39

Software, defined, 272–273
SPB. See Software product baseline (SPB)
Specification tree, 17

complexity control mechanisms, 65
Specification, analysis, and synthesis (SAS),

102–103
Stakeholder needs relationships and dependencies,

46–48
Stakeholders' needs and expectations, 124–127,

135–137, 142–144
Storyboarding, 234
Structural design considerations, physical

architecture, 211–225
behavioral analysis, 216–217
design guidelines, 211–214
modeling and simulation, 215–216
performance evaluations, 217–222
prototyping, 222–225
trade-off analysis, 217

Structural design optimization (functional
architecture), 51

Structural design solution, physical architecture,
205–207

integration strategy, 209–211
structural unit specifications, 209
structural units, 207–209
technical data package, 211

Structural design verification (functional
architecture), 51

Structural performance validation (requirements
baseline), 51

Structural units, physical architecture, 207–209
specifications, 209

Subarchitectural elements, 52
Sustainment analysis tasks, 152–155

architectural guidelines and principles, 154–155
post-development process characteristics,

153–154

351Index

post-development process operational concepts,
152–153

post-development process operational scenarios,
153

Sustainment design review, 38
Sustainment qualification review, 41
Sustainment strategy review, 37
SWE-IPT. See Software engineering integrated

product team (SWE-IPT)
Systems engineering, 7–8

principles and practices, 3–5
Systems monitoring procedures, 196–197

T
Technical data package (TDP), 335

physical architecture, 211
Technical merits, change evaluation, 281–282
Technical plan consequences, 283
Technical risk repository, 285
Technical work package consequences, 282–283
Technological evolution, 98–108

Agile Manifesto, 104–108
methods and standards, 101–105, 102f
programming, 99, 100t–101t, 101

Technology availability (requirements baseline), 49
Test coverage (software product architecture), 49
Test sufficiency (requirements baseline), 49–50
Testing and evaluation, software architecture, 49–50
Testing readiness review, 40
Timeliness versus development costs (Stakeholder

Needs), 48
Trade study, 250–251

architectural alternatives, 259–260
candidate alternatives, 250–251
documenting decisions, 261
evaluation, 259–261
execution strategy, 261
functional alternatives, 256–257
preferred course of action, 260–261
requirements alternatives, 256
scope, 250
structural alternatives, 257–258
success criteria, 251

Trade-off analysis, 22–24, 68–70
physical architecture, 217

Trade-study environment, 251–255
data collection and analysis mechanisms,

253–255
experimental mechanisms, 252–253
procedures, 255

Training design review, 38
Training qualification review, 41
Training strategy review, 36
Trees

documentation, 17
specification, 17

U
Unit design review (peer evaluation), 38
Unit qualification review (peer evaluation), 39

V
Verification and validation (V&V) practice

documenting, 273
methods, 270
overview, 263, 265
physical architecture, 272–273

integrated software configuration, 272–273
structural configuration, 272

procedures, 270–271
scope, 266–270
software architecture, 271–272

functional architecture, 271
physical architecture, 271–272
requirements baseline, 271
software implementation, 272

tasks, 265, 266f

W
WBS. See Work breakdown structure (WBS)
Work breakdown structure (WBS), 15, 124

complexity control mechanisms, 63–64
plans and schedules, 18
software requirements definition stage, 297
technical planning, 161

	Front Cover
	Software Engineering
	Copyright Page
	Contents
	A Note from the Author
	Preface
	Book outline and subject matter

	1 Software Engineering Fundamentals
	Systems engineering principles and practices
	Summary
	1 Introduction to Software Engineering
	1.1 Specifying software requirements
	1.2 Software architecture
	1.3 Integrated product and process development
	1.4 Integrated product teams
	1.5 Work breakdown structure
	1.6 Software breakdown structure
	1.7 Specification and documentation trees
	1.8 Integrated master plan and schedule
	1.9 Reviews and audits
	1.10 Configuration management and change control
	1.11 Trade-off analysis
	1.12 Risk management
	1.13 Modeling and simulation

	2 Generic Software Development Framework
	2.1 Software breakdown structure
	2.2 Software development process
	2.2.1 Requirements definition stage
	2.2.1.1 Product requirements review
	2.2.1.2 Software requirements review

	2.2.2 Preliminary architecture definition stage
	2.2.2.1 Preliminary architecture review
	2.2.2.2 Deployment strategy review
	2.2.2.3 Training strategy review
	2.2.2.4 Sustainment strategy review
	2.2.2.5 Preliminary design review

	2.2.3 Critical architecture definition stage
	2.2.3.1 Detailed architecture review
	2.2.3.2 Deployment design review
	2.2.3.3 Training design review
	2.2.3.4 Sustainment design review
	2.2.3.5 Critical design review

	2.2.4 Software unit code and testing stage
	2.2.4.1 Unit design review (peer evaluation)
	2.2.4.2 Unit qualification review (peer evaluation)

	2.2.5 Software component integration and testing stage
	2.2.5.1 Integration readiness review (peer evaluation)
	2.2.5.2 Product testing readiness review

	2.2.6 Product testing stage
	2.2.6.1 Acceptance testing readiness review
	2.2.6.2 Testing readiness review

	2.2.7 Acceptance testing stage
	2.2.7.1 Functional configuration audit
	2.2.7.2 Physical configuration audit
	2.2.7.3 Deployment qualification review
	2.2.7.4 Training qualification review
	2.2.7.5 Sustainment qualification review
	2.2.7.6 Deployment readiness review

	2.3 Summary

	3 Software Architecture
	3.1 Stakeholder needs relationships and dependencies
	3.2 Software requirements baseline relationships and dependencies
	3.3 Computing environment relationships and dependencies
	3.4 Test and evaluation relationships and dependencies
	3.5 Functional architecture relationships and dependencies
	3.6 Physical architecture relationships and dependencies
	3.7 Post-development process relationships and dependencies
	3.8 Motivation for the software architecture

	4 Understanding the Software Project Environment
	4.1 Integrated product teams
	4.2 Software architecture
	4.3 Complexity control mechanisms
	4.3.1 Work breakdown structure
	4.3.2 Product breakdown structure
	4.3.3 Specification tree
	4.3.4 Documentation tree
	4.3.5 Software product baselines
	4.3.6 Requirements traceability guidelines
	4.3.7 Trade-off analysis
	4.3.8 Software complexity measures

	4.4 Software nomenclature registry
	4.5 Software integration strategy
	4.6 Project and technical planning
	4.6.1 Technical organization plans
	4.6.2 Project plans

	5 Software Integrated Product and Process Development
	5.1 Application of IPPD to software
	5.1.1 Customer focus
	5.1.2 Concurrent development of products and processes
	5.1.3 Early and continuous life-cycle planning
	5.1.4 Maximize flexibility for optimization and use of contractor unique approaches
	5.1.5 Encourage robust design and improved process capability
	5.1.6 Event-driven scheduling
	5.1.7 Multidisciplinary teamwork
	5.1.8 Empowerment
	5.1.9 Seamless management tools
	5.1.10 Proactive identification and management of risk

	5.2 Software engineering and development

	6 Impediments to Software Design
	6.1 Software as a raw material
	6.2 Evolution of software technologies
	6.2.1 Software development methods and standards
	6.2.2 Agile manifesto

	6.3 Architecture-driven software development

	2 Software Engineering Practices
	Developing the software product architecture
	Software architectural approaches
	Iterative software engineering application

	7 Understanding Software Requirements
	7.1 Step 1: Soliciting stakeholder needs and expectations
	7.2 Step 2: Requirement analysis and specification
	7.2.1 Balancing and deconflicting stakeholder needs
	7.2.2 Maintaining the scope of the project
	7.2.2.1 Cost associated with implementing the complete set of software requirements
	7.2.2.2 Cost associated with testing the software product
	7.2.2.3 Cost associated with defining and establishing the post-development processes
	7.2.2.4 Software development timeline and task dependencies

	7.2.3 The availability of experienced software personnel

	7.3 Step 3: Task definition and scheduling
	7.4 Step 4: Resource identification, estimation, and allocation
	7.5 Step 5: Establish organizational work packages
	7.6 Step 6: Technical planning
	7.7 Step 7: Project planning
	7.8 Exploring stakeholder needs

	8 Software Requirements Analysis Practice
	8.1 Project analysis tasks
	8.1.1 Analyze project goals and objectives
	8.1.2 Identify development success criteria
	8.1.3 Solicit stakeholder needs and expectations
	8.1.4 Prioritize stakeholder needs

	8.2 Operational analysis tasks
	8.2.1 Identify operational concepts
	8.2.2 Identify operational scenarios
	8.2.3 Identify the computing environment characteristics
	8.2.4 Identify external interfaces

	8.3 Product analysis tasks
	8.3.1 Identify modes of operation
	8.3.2 Identify functional behaviors
	8.3.3 Identify resource utilization needs
	8.3.4 Identify data processing conditional logic
	8.3.5 Identify data persistence needs
	8.3.6 Identify data security needs
	8.3.7 Identify data storage transactions
	8.3.8 Identify measures of performance

	8.4 Sustainment analysis tasks
	8.4.1 Identify post-development process operational concepts
	8.4.2 Identify post-development process operational scenarios
	8.4.3 Identify post-development process characteristics
	8.4.4 Identify architectural guidelines and principles

	8.5 Project assessment tasks
	8.5.1 Assess requirements sensitivity
	8.5.2 Identify the software test strategy
	8.5.3 Assess proposed changes
	8.5.4 Assess project feasibility

	8.6 Establish the requirements baseline

	9 Software Requirements Management
	9.1 Embracing change
	9.1.1 Time is a valuable resource
	9.1.2 Change impact analysis
	9.1.3 Adjusting project milestones

	9.2 Specifying requirements
	9.3 Requirement decomposition and allocation
	9.3.1 Functional analysis
	9.3.2 Performance allocation
	9.3.3 Structural unit synthesis
	9.3.4 Structural component synthesis

	9.4 Requirement traceability
	9.4.1 Change control
	9.4.2 Configuration audits

	10 Formulating the Functional Architecture
	10.1 Motivation for the functional architecture
	10.2 Functional architecture ontology
	10.2.1 Functional component
	10.2.2 Functional unit
	10.2.3 Data item
	10.2.4 Functional interface
	10.2.5 External interface
	10.2.6 Control structures
	10.2.7 Resource
	10.2.8 Data Store

	10.3 Conceiving the functional architecture
	10.4 Documenting the functional architecture
	10.4.1 Functional hierarchy
	10.4.2 Behavior model
	10.4.3 Functional timeline
	10.4.4 Resource utilization profile
	10.4.5 Functional specifications
	10.4.6 Requirement allocation sheet

	11 Functional Analysis and Allocation Practice
	11.1 Assess functional complexity
	11.2 Behavioral analysis
	11.2.1 Identify functional scenarios
	11.2.2 Identify functional sequences
	11.2.3 Identify data flows
	11.2.4 Identify control behaviors
	11.2.5 Identify data processing procedures
	11.2.6 Identify resource prerequisites
	11.2.7 Identify failure conditions
	11.2.8 Identify systems monitoring procedures
	11.2.9 Identify data retention capacity requirements
	11.2.10 Identify data security procedures
	11.2.11 Identify data persistence and retention functions

	11.3 Performance allocation
	11.3.1 Allocate performance budgets
	11.3.2 Allocate resource budgets

	11.4 Architectural assessment
	11.4.1 Assess requirement fulfillment
	11.4.2 Assess software performance
	11.4.3 Assess architectural complexity
	11.4.4 Assess optimization opportunities

	11.5 Establish the functional architecture

	12 Configuring the Physical Architecture
	12.1 Structural design solution
	12.1.1 Designating structural units
	12.1.2 Prepare structural unit specifications
	12.1.3 Establishing the software integration strategy
	12.1.4 Designating engineering assemblages
	12.1.5 Preparing the software technical data package

	12.2 Structural design considerations
	12.2.1 Structural design guidelines
	12.2.2 Use of modeling and simulation
	12.2.3 Behavioral analysis
	12.2.4 Structural trade-off analysis
	12.2.5 Software product performance evaluations
	12.2.5.1 Design responsiveness
	12.2.5.2 Design dependability
	12.2.5.3 Resource utilization

	12.2.6 Software prototyping

	13 Software Design Synthesis Practice
	13.1 Design conceptualization
	13.1.1 Establish software architectural design guidelines
	13.1.2 Identify abstract structural components
	13.1.3 Identify abstract user interface mechanisms

	13.2 Design resolution
	13.2.1 Identify fundamental structural elements
	13.2.2 Identify integrating components
	13.2.3 Assess software reuse opportunities

	13.3 Design correlation
	13.3.1 Establish performance benchmarks
	13.3.2 Identify structural design deficiencies
	13.3.3 Assess architectural alternatives
	13.3.4 Assess software implementation challenges
	13.3.5 Assess software sustainment challenges
	13.3.6 Assess architectural integrity

	13.4 Design manifestation
	13.4.1 Establish the structural design configuration
	13.4.2 Specify structural configuration elements
	13.4.3 Identify engineering assemblages

	13.5 Prepare the software technical data package

	14 Software Analysis Practice
	14.1 Defining the trade study
	14.1.1 Establish the trade-study scope
	14.1.2 Identify the candidate alternatives
	14.1.3 Establish the success criteria

	14.2 Establish the trade-study environment
	14.2.1 Assemble the experimental mechanisms
	14.2.2 Assemble the data collection and analysis mechanisms
	14.2.3 Establish trade-study procedures

	14.3 Conduct the analysis
	14.3.1 Evaluate requirement alternatives
	14.3.2 Evaluate functional alternatives
	14.3.3 Evaluate structural alternatives

	14.4 Assess project repercussions
	14.4.1 Assess developmental implications
	14.4.2 Assess project implications
	14.4.3 Identify project execution strategies

	14.5 Evaluate trade-study results
	14.5.1 Prioritize architectural alternatives
	14.5.2 Determine the preferred course of action
	14.5.3 Document the trade-study decision
	14.5.4 Promote the execution strategy

	15 Software Verification and Validation Practice
	15.1 Define the V&V strategy
	15.1.1 Establish V&V scope
	15.1.2 Establish V&V methods
	15.1.3 Establish V&V procedures

	15.2 Verify the software architecture
	15.2.1 Verify the requirements baseline
	15.2.2 Verify the functional architecture
	15.2.3 Verify the physical architecture
	15.2.4 Verify the software implementation

	15.3 Validate the physical architecture
	15.3.1 Validate the structural configuration
	15.3.2 Validate the integrated software configuration

	15.4 Document V&V results

	16 Software Control Practice
	16.1 Configuration administration
	16.1.1 Identify architectural elements
	16.1.2 Maintain architectural status

	16.2 Process engineering change packages
	16.2.1 Record engineering change requests and proposals
	16.2.2 Prepare change evaluation packages

	16.3 Change evaluation
	16.3.1 Assess change technical merits
	16.3.2 Assess architectural consequences
	16.3.3 Assess technical work package consequences
	16.3.4 Assess technical plan consequences

	16.4 Change assimilation
	16.4.1 Publish change notification package
	16.4.2 Audit the architectural change progress
	16.4.3 Appraise the project situation

	16.5 Software repository control
	16.5.1 Maintain engineering artifact repository
	16.5.2 Maintain change history repository
	16.5.3 Maintain technical risk repository

	3 Stages of Software Engineering Application
	17 Software Requirements Definition
	17.1 Products of software requirements definition
	17.2 Software engineering integrated product team (software requirements definition stage)
	17.3 Software implementation (software requirements definition stage)
	17.4 Computing environment preparation (software requirements definition stage)
	17.5 Post-development process implementation (software requirements definition stage)
	17.6 Software test and evaluation (software requirements definition stage)
	17.7 Reviews, milestones, and baselines (software requirements definition stage)

	18 Software Architecture Definition
	18.1 Preliminary architecture definition
	18.1.1 Products of preliminary architecture definition
	18.1.2 Software engineering integrated product team (preliminary architecture definition stage)
	18.1.3 Software implementation (preliminary architecture definition stage)
	18.1.4 Computing environment preparation (preliminary architecture definition stage)
	18.1.5 Post-development process preparation (preliminary architecture definition stage)
	18.1.6 Software test and evaluation (preliminary architecture definition stage)
	18.1.7 Reviews and milestones (preliminary architecture definition stage)

	18.2 Detailed architecture definition
	18.2.1 Products of detailed architecture definition
	18.2.2 Software engineering integrated product team (detailed architecture definition stage)
	18.2.3 Software implementation (detailed architecture definition stage)
	18.2.4 Computing environment preparation (architecture detailed definition)
	18.2.5 Post-development process preparation (detailed architecture definition stage)
	18.2.6 Software test and evaluation (detailed architecture definition stage)
	18.2.7 Reviews and milestones (detailed architecture definition stage)
	18.2.8 Establish the allocated baseline

	19 Software Implementation
	19.1 Products of software implementation
	19.2 Software engineering tasks (software implementation stage)
	19.3 Software implementation tasks (software implementation stage)
	19.4 Computing environment tasks (software implementation stage)
	19.5 Post-development process tasks (software implementation stage)
	19.6 Software test and evaluation tasks (software implementation stage)
	19.7 Reviews and milestones (software implementation stage)

	20 Software Acceptance Testing
	20.1 Products of software acceptance testing
	20.2 Software engineering (software acceptance testing stage)
	20.3 Software implementation organization (software acceptance testing stage)
	20.4 Computing environment implementation organization (software acceptance testing stage)
	20.5 Post-development process organization (software acceptance testing stage)
	20.6 Software test and evaluation (software acceptance testing stage)
	20.7 Reviews and milestones (software acceptance testing stage)
	20.8 Establish the software product baseline

	Index

